Gene found to play role in early cancer

August 24, 2011 By Krishna Ramanujan

(Medical Xpress) -- Mutations to a gene called p53 have been linked to half of all cancers, leading to tumor growth and the spread of cancerous cells. Now, a Cornell-led study identifies for the first time the mechanisms by which p53 controls cell movement and invasion into other areas of the body.

Using cultures of ovarian surface epithelium cells, where ovarian cancer originates, the researchers found that when they inactivated the , the cells began to move and invade the underlying gelatinous protein mixture used in the lab that resembles an extracellular tissue environment.

"People thought that and invasion were part of later stages of cancer, but we show that this characteristic can be found in cells at the very beginning of ," said Chang-Il Hwang, lead author of the paper recently published in the Proceedings of the National Academy of Sciences and a graduate student in the lab of Cornell biomedical sciences professor and senior author Alexander Nikitin.

Under normal circumstances, p53 regulates the expression of a receptor protein called MET. But when p53 mutates, MET overexpresses, leading to cell movement and invasive growth. The researchers found two distinct pathways by which p53 regulates and suppresses MET.

"One of the next steps is to study ways to inhibit MET," said Hwang. "Our findings support the idea that suppression of MET could be a particularly reasonable and effective approach to controlling cancer carrying . We hope our findings can be generalized into other types of cancer as well."

In tests, the researchers found the p53 and MET network were consistent in both lung and colon cancer.

Mutations of p53 take many forms, with the most common mutation affecting one of the pathways that regulates MET but not the other pathway. By understanding how different p53 mutations affect each of the two pathways, researchers may one day develop individualized cancer therapies by suppressing MET, said Hwang.

"Different p53 mutations may affect the cancer from different angles," he added.

The study was funded by the National Institutes of Health, the Marsha Rivkin Center for Ovarian Cancer, Cornell's College of Veterinary Medicine and the Ovarian Cancer Research Fund.

Related Stories

Recommended for you

Elephants provide big clue in fight against cancer

October 9, 2015

Carlo Maley spends his time pondering pachyderms—and cactuses and whales, and a wide array of non-human species—all in pursuit of the answer to this question: Why do some life forms get cancer while others do not?

Compound doubles up on cancer detection

October 8, 2015

Tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer, according to a study published last week in the Proceedings of the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.