Gene found to play role in early cancer

August 24, 2011 By Krishna Ramanujan

(Medical Xpress) -- Mutations to a gene called p53 have been linked to half of all cancers, leading to tumor growth and the spread of cancerous cells. Now, a Cornell-led study identifies for the first time the mechanisms by which p53 controls cell movement and invasion into other areas of the body.

Using cultures of ovarian surface epithelium cells, where ovarian cancer originates, the researchers found that when they inactivated the , the cells began to move and invade the underlying gelatinous protein mixture used in the lab that resembles an extracellular tissue environment.

"People thought that and invasion were part of later stages of cancer, but we show that this characteristic can be found in cells at the very beginning of ," said Chang-Il Hwang, lead author of the paper recently published in the Proceedings of the National Academy of Sciences and a graduate student in the lab of Cornell biomedical sciences professor and senior author Alexander Nikitin.

Under normal circumstances, p53 regulates the expression of a receptor protein called MET. But when p53 mutates, MET overexpresses, leading to cell movement and invasive growth. The researchers found two distinct pathways by which p53 regulates and suppresses MET.

"One of the next steps is to study ways to inhibit MET," said Hwang. "Our findings support the idea that suppression of MET could be a particularly reasonable and effective approach to controlling cancer carrying . We hope our findings can be generalized into other types of cancer as well."

In tests, the researchers found the p53 and MET network were consistent in both lung and colon cancer.

Mutations of p53 take many forms, with the most common mutation affecting one of the pathways that regulates MET but not the other pathway. By understanding how different p53 mutations affect each of the two pathways, researchers may one day develop individualized cancer therapies by suppressing MET, said Hwang.

"Different p53 mutations may affect the cancer from different angles," he added.

The study was funded by the National Institutes of Health, the Marsha Rivkin Center for Ovarian Cancer, Cornell's College of Veterinary Medicine and the Ovarian Cancer Research Fund.

Related Stories

Recommended for you

Scientists block breast cancer cells from hiding in bones

May 25, 2016

Scientists at the Duke Cancer Institute have identified a molecular key that breast cancer cells use to invade bone marrow in mice, where they may be protected from chemotherapy or hormonal therapies that could otherwise ...

Genetic sequencing reveals drug resistance growth

May 25, 2016

The rate at which genetically mutated cancer cells grow may help explain why patients with a common form of leukemia develop treatment resistance, according to new research led by a Weill Cornell Medicine investigator. The ...

Taking control of key protein stifles cancer spread in mice

May 20, 2016

For cancer to spread, the cells that take off into the bloodstream must find a tissue that will permit them to thrive. They don't just go looking, though. Instead, they actively prepare the tissue, in one case by co-opting ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.