New perspectives on sensory mechanisms

August 29, 2011
Cutaneous touch receptor: end-organs in hairy skin. The latest perspectives in general physiology series examines the mechanisms of visual, aural, olfactory, and tactile processes in mammals. Credit: Bautista, D.M., and E.A. Lumpkin. 2011. J. Gen. Physiol. doi:10.1085/jgp.201110637.

The latest Perspectives in General Physiology series examines the mechanisms of visual, aural, olfactory, and tactile processes that inform us about the environment. The series appears in the September 2011 issue of the Journal of General Physiology.

Everything that mammals perceive about the environment is based on the transmission to the brain of signals originating in sensory organs such as the eye, ear, nose, and skin. As described by UCLA researchers Robert Farley and Alapakkam Sampath in their introduction to the series, the encoding of sensory information is initiated by specialized peripheral sensory and refined by local neural circuits, with both excitatory and inhibitory inputs ultimately analyzed and interpreted in the .

The Perspectives series provides a comprehensive summary of what is currently understood about the mechanisms of information processing in multiple mammalian sensory systems. Such a comparative approach across systems provides insight into the common strategies that might be used by researchers to quantify and characterize that information.

In the Perspective series, Schwartz and Rieke discuss the visual system, where the of sensory encoding have been most investigated; Bautista and Lumpkin focus on the cells and molecules that mediate light touch in the periphery; Reisert and Zhao focus on how cells encode the presence of odorants in the environment; and Zhang et al. emphasize the important and varied roles inhibitory mechanisms play in encoding auditory signals.

The purpose of the Perspectives in General Physiology series is to provide an ongoing forum where scientific questions or controversies can be discussed by experts in an open manner.

More information:
Farley, R.A., and A.P. Sampath. 2011. J. Gen. Physiol. doi:10.1085/jgp.201110666
Schwartz, G., and F. Rieke. 2011. J. Gen. Physiol. doi:10.1085/jgp.201110629
Bautista, D.M., and E.A. Lumpkin. 2011. J. Gen. Physiol. doi:10.1085/jgp.201110637
Reisert, J., and H. Zhao. 2011. J. Gen. Physiol. doi:10.1085/jgp.201110645
Zhang, L.I., et al. 2011. J. Gen. Physiol. doi:10.1085/jgp.20111065

Related Stories

Recommended for you

Researchers grow retinal nerve cells in the lab

November 30, 2015

Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain. ...

Shining light on microbial growth and death inside our guts

November 30, 2015

For the first time, scientists can accurately measure population growth rates of the microbes that live inside mammalian gastrointestinal tracts, according to a new method reported in Nature Communications by a team at the ...

Functional human liver cells grown in the lab

November 26, 2015

In new research appearing in the prestigious journal Nature Biotechnology, an international research team led by The Hebrew University of Jerusalem describes a new technique for growing human hepatocytes in the laboratory. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.