Combination therapy rids common infection from implanted medical devices

September 8, 2011

Researchers at the University of Toronto have developed a therapy for a potentially deadly type of infection common in catheters, artificial joints and other "in-dwelling" medical devices. Their findings appear in the Open Access Journal PLoS Pathogens on September 8th.

The therapy targets , which are hard to treat in such devices because they are composed of biofilms—complex groupings of cells that attach to surfaces. Biofilms, in turn, are coated in a gooey matrix that resists drugs.

Patients often undergo surgical removal of the infected catheter or other device in an attempt to clear the disease and prevent a system-wide dispersal of infecting cells.

In this study, researchers showed that inhibiting the function of a protein called Hsp90 abolishes drug resistance in the two main fungal pathogens of humans, Candida albicans and Aspergillus fumigatus. "It takes classic antifungals, which were not effective against biofilms, and makes them very effective," said Prof. Leah Cowen, principal investigator on the study who holds the Canada Research Chair in Microbial Genomics and Infectious Disease at U of T's Department of Molecular Genetics.

In an animal model of a central venous catheter infected with deadly fungus, the researchers were able to completely clear the infection by inhibiting Hsp90 and applying antifungals.

Fungal pathogens are a major clinical problem. Candida albicans is the third-leading cause of intravascular catheter-related infections, and is fatal in about 30% of infections associated with devices. And the number of acquired fungal bloodstream infections has increased by more than 200% over the last two decades, partly because successful treatments for previously fatal diseases like cancer and AIDS have left many patients immune-compromised and susceptible to infection.

With more than 10 million patients per year now receiving , artificial joints and other devices, there is a pressing need for a better understanding of biofilms and their role in drug resistance of fungal pathogens.

More information: Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, et al. (2011) Hsp90 Governs Dispersion and Drug Resistance of Fungal Biofilms. PLoS Pathog 7(9): e1002257. doi:10.1371/journal.ppat.1002257

Related Stories

Recommended for you

Experimental MERS vaccine shows promise in animal studies

July 28, 2015

A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines. ...

Antibody found that fight MERS coronavirus

July 28, 2015

(Medical Xpress)—An international team of researchers has found a MERS neutralizing antibody—a discovery that could perhaps lead to a treatment for people infected with the virus. In their paper published in Proceedings ...

Can social isolation fuel epidemics?

July 21, 2015

Conventional wisdom has it that the more people stay within their own social groups and avoid others, the less likely it is small disease outbreaks turn into full-blown epidemics. But the conventional wisdom is wrong, according ...

Lack of knowledge on animal disease leaves humans at risk

July 20, 2015

Researchers from the University of Sydney have painted the most detailed picture to date of major infectious diseases shared between wildlife and livestock, and found a huge gap in knowledge about diseases which could spread ...

IBD genetically similar in Europeans and non-Europeans

July 20, 2015

The first genetic study of inflammatory bowel disease (IBD) to include individuals from diverse populations has shown that the regions of the genome underlying the disease are consistent around the world. This study, conducted ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.