Motor memory: The long and short of it

For the first time, scientists at USC have unlocked a mechanism behind the way short- and long-term motor memory work together and compete against one another.

The research — from a team led by Nicolas Schweighofer of the Division of Biokinesiology and Physical Therapy at USC — could potentially pave the way to more effective rehabilitation for stroke patients.

It turns out that the phenomenon of motor memory is actually the product of two processes: short-term and long-term memory.

If you focus on learning motor skills sequentially — for example, two overhand ball throws — you will acquire each fairly quickly, but are more likely to forget them later. However, if you split your time up between learning multiple motor skills — say, learning two different throws — you will learn them more slowly but be more likely to remember them both later.

This phenomenon, called the "contextual interference effect," is the result of a showdown between your short-term and long-term motor memory, Schweighofer said. Though scientists have long been aware of the effect's existence, Schweighofer's research is the first to explain the mechanism behind it.

"Continually wiping out motor short-term memory helps update long-term memory," he said.

In short, if your brain can rely on your short-term to handle memorizing a single motor task, then it will do so, failing to engage your long-term memory in the process. If you deny your brain that option by continually switching from learning one task to the other, your long-term memory will kick in instead. It will take longer to learn both, but you won't forget them later.

"It is much more difficult for people to learn two tasks," he said. "But in the random training there was no significant forgetting."

Schweighofer uncovered the mechanism while exploring the puzzling results of spatial working memory tests in individuals who had suffered a brain stroke.

Those individuals, whose short-term memory is damaged from the stroke, show better long-term retention because they are forced to rely on their long-term memories.

Schweighofer's paper appears in the August issue of .

In the long term, he said he hopes this research could help lead to computer programs that optimize rehabilitation for stroke patients, determining what method of training will work best for each individual.

Related Stories

A better way to remember

Jun 17, 2011

Scientists and educators alike have long known that cramming is not an effective way to remember things. With their latest findings, researchers at the RIKEN Brain Science Institute in Japan, studying eye ...

Synthetic synapse mimics dynamic memory in human brain

Jul 22, 2011

Researchers from UCLA and Japan have designed a synthetic synapse for use in computing equipment that mimics the function of synapses in the human brain. The silver sulfide, nanoscale synapse, or "atomic switch," demonstrates ...

Short-term memory ability may predict IQ

Jul 12, 2007

U.S. psychologists have found people with high IQs might be able to remember more than the four objects an average person can store in short-term memory.

Recommended for you

Know the brain, and its axons, by the clothes they wear

6 hours ago

(Medical Xpress)—It is widely know that the grey matter of the brain is grey because it is dense with cell bodies and capillaries. The white matter is almost entirely composed of lipid-based myelin, but ...

Turning off depression in the brain

Apr 17, 2014

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Rapid whole-brain imaging with single cell resolution

Apr 17, 2014

A major challenge of systems biology is understanding how phenomena at the cellular scale correlate with activity at the organism level. A concerted effort has been made especially in the brain, as scientists are aiming to ...

User comments