New insight into the cellular defects in Huntington's disease

October 10, 2011

Huntington disease is a devastating neurogenerative disorder that causes a progressive loss of functional capacity and reduced life span. It is an inherited condition caused by a mutant HTT gene. Although this has been known for many years, the functions of the normal Htt protein and the mechanisms by which the mutant protein generated from the mutant HTT gene causes disease are not well understood. A team of researchers led by Frédéric Saudou, at the Institut Curie, France, has now uncovered a new function for normal Htt protein and determined that this function is disrupted in a mouse model of Huntington disease and in patients with the disorder.

Detailed analysis by Saudou and colleagues determined that normal Htt protein regulates the formation of cellular structures known as cilia and that cilia were longer and disorganized in the mouse model of and patients. They therefore suggest that abnormal cilia could be a cause of some of the symptoms of Huntington disease. However, they also caution that further studies are needed to prove this. This point is also made in an accompanying commentary by Scott Zeitlin and Jeh-Ping Liu, at the University of Virginia, Charlottesville, who go on to note that determining this is critical to discerning whether therapeutic strategies designed to normalize ciliary function could ameliorate the symptoms of Huntington disease.

Explore further: A step toward controlling Huntington's disease?

More information: Ciliogenesis is regulated by a huntingtin-HAP1-PCM1 pathway and is altered in Huntington disease: www.jci.org/articles/view/57552?key=b408131883a0d00ac557

Related Stories

A step toward controlling Huntington's disease?

June 23, 2011

Johns Hopkins researchers have identified a natural mechanism that might one day be used to block the expression of the mutated gene known to cause Huntington’s disease. Their experiments offer not an immediate cure, ...

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.