Race to nerve regeneration: faster is better

October 3, 2011

A team of researchers led by Clifford Woolf and Chi Ma, at Children's Hospital Boston and Harvard Medical School, Boston, has identified a way to accelerate the regeneration of injured peripheral nerves in mice such that muscle function is restored. In an accompanying commentary, Ahmet Höke, at Johns Hopkins School of Medicine, Baltimore, discusses the importance of this work to the clinical problem.

Our peripheral nerves connect our brain and spinal cord to the rest of our body, controlling all volitional muscle movements. However, they are fragile and very easily damaged. Peripheral nerves can regenerate after injury, and if the site of damage is close to the muscle controlled by the damaged nerve, full muscle function is frequently restored. However, if the site of damage is far from the muscle controlled by the damaged nerve, recovery of muscle function is minimal.

Woolf, Ma, and colleagues found that injured peripheral nerves grew faster in that overexpressed human heat shock protein 27 (Hsp27) than in normal mice. This enabled the to form functional connections with their target muscle and led to recovery of . Clinical data are also provided to support the authors' suggestion that their work indicates that strategies that increase the rate of nerve growth may enhance functional recovery in patients after peripheral nerve damage.

Explore further: Breathing restored after spinal cord injury

More information: View this article at: www.jci.org/articles/view/58675?key=0f90348dc02c50fde505

Related Stories

Breathing restored after spinal cord injury

July 13, 2011

Researchers at Case Western Reserve University School of Medicine bridged a spinal cord injury and biologically regenerated lost nerve connections to the diaphragm, restoring breathing in an adult rodent model of spinal cord ...

Recommended for you

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.