Zinc's role in the brain: Research gives insight into 50-year-old mystery

October 5, 2011

Zinc plays a critical role in regulating how neurons communicate with one another, and could affect how memories form and how we learn. The new research, in the current issue of Neuron, was authored by Xiao-an Zhang, now a chemistry professor at the University of Toronto Scarborough (UTSC), and colleagues at MIT and Duke University.

Researchers have been trying to pin down the role of zinc in the brain for more than fifty years, ever since scientists found high concentrations of the chemical in synaptic vesicles, a portion of the neuron that stores neurotransmitters. But it was hard to determine just what zinc's function was.

In the new work, the researchers designed a chemical called ZX1 that would bind with zinc rapidly after it was released from the vesicles but before it could complete its journey across the synapse. Using the chemical, they were able to observe how neurons behaved when deprived of zinc.

"As a chemist, I'm proud that I can make a contribution to neuroscience," says Zhang, who helped design the chemical while conducting postdoctoral research in Stephen J. Lippard's lab at MIT. He was joint first author of the paper, along with Enhui Pan from James O. McNamara's group at Duke University.

The researchers studied neurons in a brain region called the , which is associated with learning and . They found that removing zinc interfered with a process called long-term potentiation . Long-term potentiation strengthens the connection between two neurons, and seems to be important for memory and learning.

Zhang is currently working on developing new that could be used in medical imaging.

Explore further: Scientists identify mechanism of long-term memory

Related Stories

Scientists identify mechanism of long-term memory

April 13, 2011

Using advanced imaging technology, scientists from the Florida campus of The Scripps Research Institute have identified a change in chemical influx into a specific set of neurons in the common fruit fly that is fundamental ...

Zinc regulates communication between brain cells

September 21, 2011

Zinc has been found to play a critical role in regulating communication between cells in the brain, possibly governing the formation of memories and controlling the occurrence of epileptic seizures.

Recommended for you

New theory explains how beta waves arise in the brain

July 25, 2016

Beta rhythms, or waves of brain activity with an approximately 20 Hz frequency, accompany vital fundamental behaviors such as attention, sensation and motion and are associated with some disorders such as Parkinson's disease. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.