Brain circuits connected with memory discovered

November 7, 2011 by Deborah Braconnier report
Brain

(Medical Xpress) -- A new study published last week in Science reveals the discovery of a brain pathway that helps us link events that happen close together and play a role in memories.

The research, led by Dr. Junghyup Suh from the Massachusetts Institute of Technology found the connection between the and the . The entorhinal cortex receives the information from areas around the brain and then passes the information to the hippocampus.

To test this pathway, the researchers used specifically bred mice. These mice had a which allowed the cells in the entorhinal cortex to be disabled by removing from the food the mice were fed.

When mice are presented with a sound and then within 20 seconds given a shock, they quickly learn to associate this sound with the coming shock and freeze in their tracks when the sound is heard. This experiment was conducted on the mice with the disabled entorhinal cortex and researchers discovered that the mutant mice were less likely to react to the sound.

However, when the researchers administered the shock at the same time as the sound, both mice behaved the same. This shows that there is a connection between the connection of time and the entorhinal cortex.

Another experiment used a water maze and a small platform where the mice could find to stop swimming and rest. They were allowed to find the platform and then 30 seconds later placed in the water maze. The were less likely to be able to find the platform even though they had just found it 30 seconds prior. The linking of memories to what was currently happening appeared difficult for these mice.

When it comes to Alzheimer’s disease, patients have difficulty with memory. In Alzheimer’s, the entorhinal cortex is one of the first areas of the brain that is damaged.

Explore further: Do mammals think in 3-D?

More information: Entorhinal Cortex Layer III Input to the Hippocampus Is Crucial for Temporal Association Memory, Science DOI: 10.1126/science.1210125

ABSTRACT
Associating temporally discontinuous elements is crucial for the formation of episodic and working memories that depend on the hippocampal-entorhinal network. However, the neural circuits subserving these associations have remained unknown. The layer III inputs of the entorhinal cortex to the hippocampus may contribute to this process. To test this hypothesis, we generated a transgenic mouse in which these inputs are specifically inhibited. The mutant mice displayed significant impairments in spatial working memory tasks and in the encoding phase of trace fear-conditioning. These results indicate a critical role of the entorhinal cortex layer III inputs to the hippocampus in temporal association memory.

Related Stories

Do mammals think in 3-D?

July 14, 2008

A team of neuroscientists at University College London (UCL) has begun to discover how the brain maps three-dimensional space. The work could one day aid in the understanding and treatment of Alzheimer’s disease, which ...

Better understanding of mapmaking in the brain

August 9, 2010

"Grid cells," which help the brain map locations, have been found for the first time outside of the hippocampus in the rat brain, according to new research from the Norwegian University of Science and Technology (NTNU). The ...

Recommended for you

Scientists map brain's action center

August 25, 2016

When you reach for that pan of brownies, a ball-shaped brain structure called the striatum is critical for controlling your movement toward the reward. A healthy striatum also helps you stop yourself when you've had enough.

Researchers find new role for cannabinoids in vision

August 25, 2016

A multidisciplinary team including researchers from the Montreal Neurological Institute has improved our understanding of how cannabinoids, the active agent in marijuana, affect vision in vertebrates.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.