Common bacteria cause some colon tumors by altering peroxide-producing gene

November 5, 2011

Working with lab cultures and mice, Johns Hopkins scientists have found that a strain of the common gut pathogen Bacteroides fragilis causes colon inflammation and increases activity of a gene called spermine oxidase (SMO) in the intestine. The effect is to expose the gut to hydrogen peroxide – the caustic, germ-fighting substance found in many medicine cabinets -- and cause DNA damage, contributing to the formation of colon tumors, say the scientists.

"Our data suggest that the SMO gene and its products may be one of the few good targets we have discovered for chemoprevention," says Robert Casero, Ph.D., professor of oncology at the Johns Hopkins Kimmel Cancer Center.

In a study, Casero and his colleagues introduced B. fragilis to two colon cell lines and measured SMO gene activity. In both cell lines, SMO gene activity increased two to four times higher than cells not exposed to the bacteria. The scientists also observed similar increases in enzymes produced by the SMO gene. The scientists successfully prevented DNA damage in these cells by blocking SMO enzyme activity with a compound called MDL 72527.

The Johns Hopkins team also tested their observations in a mouse model, created by Hopkins infectious disease specialist Cynthia Sears, M.D., to develop . exposed to the bacteria had similar increases in SMO. Mice treated with MDL 72527 had far fewer tumors and lower levels of colon inflammation than untreated mice. Results of the experiments were published online in the Proceedings of the National Academy of Sciences in August.

Casero says hydrogen peroxide can freely distribute through and into other cells. "It roams around, and can damage the DNA in cells," he says.

Rising levels of and DNA damage in the colon are clear steps to tumor development, says Andrew Goodwin, Ph.D., who spearheaded the studies while performing graduate work in Johns Hopkins' Cellular and Molecular Medicine Program and Casero's laboratory.

B. fragilis strains that secrete a toxin are widely known to cause diarrhea in children and adults, and previous studies, including those at Johns Hopkins, have linked the toxin-producing bacteria to inflammation and colon cancer. Casero and collaborators previously linked the SMO gene to and cancer of the prostate and stomach.

Using MDL 72527 in humans is not advised, Casero says, because the compound blocks another enzyme in addition to SMO. Investigators hope to develop a drug that targets only the SMO enzyme. Candidates for such prevention strategies may include people with a history of colon polyps, which increases risk for colon cancer, and those with inflammatory bowel disease.

Related Stories

Cancer cells' universal 'dark matter' exposed

June 26, 2011

Using the latest gene sequencing tools to examine so-called epigenetic influences on the DNA makeup of colon cancer, a Johns Hopkins team says its results suggest cancer treatment might eventually be more tolerable and successful ...

Knockout of protein prevents colon tumor formation in mice

September 29, 2011

A protein that regulates cell differentiation in normal tissue may play a different role in colon and breast cancer, activating proliferation of damaged cells, according to researchers at the University of Illinois at Chicago ...

Recommended for you

Study reveals new insight into DNA repair

August 3, 2015

DNA double-strand breaks (DSBs) are the worst possible form of genetic malfunction that can cause cancer and resistance to therapy. New information published this week reveals more about why this occurs and how these breaks ...

Strange circular DNA may offer new way to detect cancers

July 30, 2015

Strange rings of DNA that exist outside chromosomes are distinct to the cell types that mistakenly produced them, researchers have discovered. The finding raises the tantalizing possibility that the rings could be used as ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.