Scientists discover how daughter cells receive the same number of chromosomes

November 1, 2011

Scientists at Warwick Medical School have uncovered the molecular process of how cells are by-passing the body's inbuilt 'health checkpoint' with cells that carry unequal numbers of chromosomes that have a higher risk of developing cancer.

Studying simple , scientists now understand the mechanism by which cells ensure their daughter cells receive the correct number of chromosomes.

Most cells in our bodies contain 23 pairs of chromosomes that encode our individual genetic identities. In healthy, dividing human cells, each of these chromosomes is duplicated and one copy passed to each of the two daughter cells. However, if this process is disturbed, receive an unequal number of chromosomes, a state that is known to drive normal cells to become cancerous. In fact, aggressive human tumours are frequently composed of cells with an abnormal complement of chromosomes.

Professor Jonathan Millar explained: "This cell division process is monitored by the body's known as the 'spindle checkpoint', and that is only switched off once everything within the cell is set up correctly. Amazingly, all of the elements of this process are conserved from yeast to human cells. Therefore it is extremely likely that what we have found in yeast also happens in . So by preventing this process happening with drugs, you could restrict the cell's ability to develop into full blown cancer," explained Professor Millar.

Currently, one of the most frequently used classes of anti-cancer drugs are taxanes, which target the mitotic apparatus in part by preventing proper silencing of the spindle checkpoint. However, this class of drug affects healthy and alike and can have debilitating side effects including permanent and hair loss.

Professor Millar explained: "Now that we have pinpointed the central elements of cell division, we are in a great position to design drugs that can be more selective and targeted about which cells they treat. But this is just the start – much more research has to be done before we can convert this into a commercial treatment for patients, but we are greatly encouraged that our research here at Warwick is leading the way in the search for more effective cancer treatments with fewer side effects."

More information: Professor Millar's research paper was published in Developmental Cell, doi:10.1016/j.devcel.2011.05.008

Related Stories

Recommended for you

Study identifies 'major player' in skin cancer genes

July 27, 2015

A multidisciplinary team at Yale, led by Yale Cancer Center members, has defined a subgroup of genetic mutations that are present in a significant number of melanoma skin cancer cases. Their findings shed light on an important ...

Researchers find gene associated with thinking skills

July 15, 2015

An international team of researchers, including investigators from the University of Mississippi Medical Center (UMMC), has identified a gene that underlies healthy information processing—a first step on a complicated road ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.