Sudden stress shifts human brain into survival mode

November 25, 2011

(Medical Xpress) -- In threatening situations, the brain adapts within seconds to prepare for an appropriate response. Some regions are temporarily suppressed. Others become more active and form temporarily alliances for fight or flight. Noradrenaline is driving force behind this reorganization. (Science, November 25).

Almost instantly after encountering something terrifying, the brain gears up for an adequate response. This can happen within seconds. The resulting integrated state of body and mind is optimized to survive threatening situations. The changes underlying this response have not been mapped previously in this level of detail.

'We feel the fear, our senses are sharpened, and we create . But our capacity for careful deliberation is impaired so that we can respond rapidly above all', says Erno Hermans, the first author of the paper that appears in Science on November 25. Hermans works at the Donders Institute for Brain, Cognition and Behaviour of the Radboud University/Radboud Medical Centre.

Hermans showed his participants horror movies in the scanner while recording fluctuations in activity across the entire brain. That is an important new trend in neuroscience. 'Subsequently, you can use to determine which regions became active, and which regions formed a network of activity. We think these methods provide more insight into how the brain functions than looking at isolated responses to specific stimuli'.

'Our setup moreover allows us to investigate specifically the response to acute stress. We see activity in other regions than those observed previously by other researchers. We think that this discrepancy can be explained by the fact that in those studies, participants continuously received on their performance in a task. This creates pressure to achieve, which urges people to make a stronger effort. That also leads to stress, but not the acute fight-or-flight response in which we were interested.'

Two hormones are involved in the brain's response to stress: Cortisol and . By administering their participants drugs that suppress either cortisol or noradrenaline, Hermans and colleagues were able to determine that noradrenaline triggers the acute stress response. Hermans: 'In response to , availability of cortisol in the brain increases, but this change is not very fast. Noradrenaline is released directly from the locus coeruleus in the brain. The field has a strong focus on the cortisol response, but we show that noradrenaline is more important in the early phase of the stress response.'

Explore further: Stress and alcohol 'feed' each other

More information: "Stress-Related Noradrenergic Activity Prompts Large-Scale Neural Network Reconfiguration,"

Acute stress shifts the brain into a state that fosters rapid defense mechanisms. Stress-related neuromodulators are thought to trigger this change by altering properties of large-scale neural populations throughout the brain. We investigated this brain-state shift in humans. During exposure to a fear-related acute stressor, responsiveness and interconnectivity within a network including cortical (frontoinsular, dorsal anterior cingulate, inferotemporal, and temporoparietal) and subcortical (amygdala, thalamus, hypothalamus, and midbrain) regions increased as a function of stress response magnitudes. β-adrenergic receptor blockade, but not cortisol synthesis inhibition, diminished this increase. Thus, our findings reveal that noradrenergic activation during acute stress results in prolonged coupling within a distributed network that integrates information exchange between regions involved in autonomic-neuroendocrine control and vigilant attentional reorienting.

Related Stories

Stress and alcohol 'feed' each other

July 15, 2011

Acute stress is thought to precipitate alcohol drinking. Yet the ways that acute stress can increase alcohol consumption are unclear. A new study investigated whether different phases of response to an acute stressor can ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.