Researchers develop a vaccine prototype stronger than traditional vaccines

Brigham and Women's Hospital (BWH) researchers have created a vaccine that is more potent than traditional vaccines available today. The glycoconjugate vaccine prototype is 100 times more effective than traditional glycoconjugate vaccines. Their work is published in the December 2011 issue of Nature Medicine.

A glycoconjugate vaccine is comprised of covalently bound and , and is the standard design for many vaccines used to protect against such as and .

Researchers designed the vaccine prototype after discovering that immune cells, called T-cells, can recognize a vaccine's carbohydrates, and from that recognition elicit an . This discovery challenges popular assumptions that immune cells only recognize the protein portion of glycoconjugate vaccines.

Proof that T-cells recognize carbohydrates came when researchers immunized mice with different types of glycoconjugate vaccines against the bacteria, . One group was immunized with vaccines containing different proteins. Another group was immunized with vaccines with the same proteins. For both groups, the carbohydrate chain in the vaccines was the same.

Researchers saw that mice given the vaccines with different proteins had just as good an immune response as those given vaccines with the same proteins—the variability in proteins did not change immune response. This told researchers that T-cells were recognizing carbohydrates to generate a consistent immune response. They further investigated the mechanisms responsible for how carbohydrate-containing glycoconjugate vaccines activate protective immunity to a bacterial infection.

"One thing that is tremendously novel here is that we were able to find T-cells within a mouse after immunization with a glycoconjugate [vaccine] that just recognized carbohydrates," said Dennis L. Kasper, MD, director of BWH's Channing Laboratory. "So these may be the first true carbohydrate-specific T-cells found."

The understanding that it was not only proteins, but also carbohydrates that were being recognized by cells led researchers to design a vaccine that yielded many carbohydrate particles when processed by the immune system—in turn creating a vaccine that generated a stronger immune response. Researchers believe that the more effective vaccine prototype they designed may one day assist in protecting high-risk populations susceptible of disease.

"For example, pneumococcal conjugate vaccines are good in children, but are not effective in protecting the elderly," explained Kasper. So we are hopeful that by designing vaccines like this, you'll make better vaccines that will be effective in all the at-risk populations."

Fikri Avci, PhD, lead study author and instructor in the Department of Medicine at BWH and Harvard Medical School adds that the findings on how the body's interact with carbohydrates will also lead to more effective vaccines in the future.

"Carbohydrates are among the most abundant and structurally diverse molecules in nature," said Avci. "They are extremely important in many biological functions. A better understanding of carbohydrate interaction is crucial. We are hoping that our findings will provide a framework for production of new-generation therapeutics and preventive medicines not only against bacterial infections, but also for cancer and viral diseases."

Provided by Brigham and Women's Hospital

5 /5 (2 votes)

Related Stories

Adjuvant combo shows potential for universal influenza vaccine

Jun 08, 2011

Researchers at National Jewish Health have discovered how to prime a second arm of the immune system to potentially boost influenza vaccine effectiveness. A combination of two adjuvants, chemicals used to boost the effectiveness ...

RNA molecules boost vaccine effectiveness

Oct 08, 2008

(PhysOrg.com) -- A novel delivery system that could lead to more efficient and more disease-specific vaccines against infectious diseases has been developed by biomedical engineers at The University of Texas ...

New development could increase flu vaccine supply

Jun 02, 2011

(Medical Xpress) -- Scientists from the U.S. Food and Drug Administration and the pharmaceutical company Novartis announced today in the journal Science Translational Medicine that they have developed a new adjuvant, or com ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments