Previously unconnected molecular networks conspire to promote cancer

An inflammation-promoting protein triggers deactivation of a tumor-suppressor that usually blocks cancer formation via the NOTCH signaling pathway, a team of researchers led by scientists at The University of Texas MD Anderson Cancer Center reports today in Molecular Cell.

Working in cell lines, the team discovered a mechanism by which alpha (TNFα) stimulates tumor formation, said senior author Mien-Chie Hung, Ph.D., professor and chair of MD Anderson's Department of Molecular and Cellular Oncology. Hung also is MD Anderson's vice president for basic research.

"We've discovered cross-talk between the TNFα and NOTCH signaling pathways, which had been known to separately promote cancer development and growth," Hung said. Liver cancer is one of several cancers, including pancreatic and breast, associated with inflammation.

Their findings have potential implications for a new class of anti-cancer drugs currently in clinical trials. "Pharmaceutical companies are developing NOTCH inhibitors," Hung said. "TNFα now presents a potential resistance mechanism that activates NOTCH signaling in a non-traditional way."

Pathways also unite in colon, lung, prostate cancers

"In addition, co-activation of these two pathways was also observed in colon, lung and prostate cancers, suggesting that the cross-talk between these two pathways may be more generally relevant," Hung said.

However, TNFα also presents an opportunity to personalize therapy, Hung said. The presence of TNFα or a separate that it activates called IKK alpha may serve as useful biomarkers to guide treatment.

"If a patient has only NOTCH activated, then the NOTCH inhibitor alone might work. But if TNFα or IKKα are also activated, then the NOTCH inhibitor alone might not work very well and combination therapy would be warranted," Hung said.

"We'll try this in an animal model and then go to clinical trial if it holds up," Hung said.

A path from inflammation to liver cancer

In a series of experiments, Hung and colleagues connected the following molecular cascade:

  • TNFα, a proinflammatory cytokine, signals through a cell's membrane, activating IKKα, a protein kinase that regulates other proteins by attaching phosphate groups (one phosphate atom, four oxygen atoms) to them.
  • IKKα moves into the cell nucleus, where it phosphorylatesFOXA2, a transcription factor that normally fires up the NUMB.
  • NUMB usually blocks a protein called NICD, the activated portion of NOTCH1 that slips into the cell nucleus to activate genes that convert the normal cell to a malignant one.
  • But when FOXA2 is phosphorylated, it does not activate NUMB. With NUMB disabled, NOTCH1 is activated. New understanding, new targets for cancer therapy
In liver cancer (hepatocellular carcinoma) tumors, IKKα, the phosphorylated version of FOXA2 and NOTCH1 are expressed more heavily than in normal liver tissue. Expression of all three is correlated in liver cancer tumors, the team found.

The authors conclude that identifying the link between TNFα and NOTCH1 pathways provides a new starting point for understanding the molecular basis for TNFα-related tumor growth and for identifying new targets for cancer therapy.

Finding ways to inhibit FOXA2 phosphorylation or to activate NUMB would provide new options for treating and perhaps preventing cancer, Hung said.

add to favorites email to friend print save as pdf

Related Stories

Inflammation May Play Role in Metastasis of Prostate Cancer

Mar 20, 2007

Many would assume that “mounting an immune response” or “having your body fight the cancer” is a good thing. Now, research at the University of California, San Diego (UCSD) School of Medicine strongly suggests that ...

Oncoproteins double-team and destroy vital tumor-suppressor

Feb 14, 2008

Two previously unconnected cancer-promoting proteins team up to ambush a critical tumor suppressor by evicting it from the cell's nucleus and then marking it for death by a protein-shredding mechanism, a team led by scientists ...

Latest rheumatoid arthritis drugs compared

Apr 17, 2008

Findings published today in the open access journal BMC Musculoskeletal Disorders shows that the latest class of drugs used to treat rheumatoid arthritis (RA) are better than standard anti-inflammatories.

Recommended for you

Putting the brakes on cancer

Dec 19, 2014

A study led by the University of Dundee, in collaboration with researchers at our University, has uncovered an important role played by a tumour suppressor gene, helping scientists to better understand how ...

Peanut component linked to cancer spread

Dec 19, 2014

Scientists at the University of Liverpool have found that a component of peanuts could encourage the spread and survival of cancer cells in the body.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.