Scientists find missing link in regulation of glucose

By Robert Perkins

(Medical Xpress) -- A team led by USC neuroscientist Alan Watts identified for the first time a biochemical signal that helps regulate the amount of glucose in the blood.

A better understanding of the way the body naturally deals with incorrect levels of glucose could lay the foundation for better treatments for  — which occurs when a person is unable to produce the glucose-regulating hormone, insulin.

“There’s a lot of interest in the field to determine how the brain detects and reacts to changes in ,” said Watts, professor of neurobiology in USC Dornsife.

Watts and his team discovered that enzymes known as mitogen-activated protein kinases form a critical link between changes in blood , certain in the hypothalamus and the release of glucose-controlling hormones.

“Nobody has shown that before,” Watts said.

Understanding, in detail, the way in which these neurons make necessary adjustments to blood glucose levels will provide important new insights into the complications of Type 1 , Watts said.

Currently, the way that Type 1 patients can cope with hyperglycemia (too much glucose in the blood) is by giving themselves insulin shots. Insulin moves glucose out of the bloodstream and locks it up as glycogen in liver and muscle tissue. The problem, Watts said, is that the insulin therapy itself can sometimes be problematic, resulting in hypoglycemia (too little glucose in the blood) and even further complications.

There has to be a better way, Watts said.

To explore the way the body normally balances between hyper- and hypoglycemia, Watts and his team studied neurons in the brains of rats.

Neurons use electrical impulses and neurochemicals to communicate within the nervous system. Corticotropin-releasing hormone (CRH) neurons in the hypothalamus — a part of the brain that connects the nervous system to the hormone-secreting endocrine system — are “the head of the mammalian stress response,” Watts said. “They drive the release of glucocorticoid, which is a critical hormone for maintaining normal blood glucose.”

So when glucose levels in the blood fall (a form of stress), the brain sends signals to the CRH neurons telling them to release glucocorticoid to help compensate.

“These neurons receive inputs from many parts of the brain,” Watts said, “but a single set of inputs from the hindbrain appears critical for driving CRH neurons during hypoglyclemia. The lower the blood , the stronger the stress, so they release more hormones.”

Watts’ article appears in the Dec. 14 issue of The Journal of Neuroscience.

Related Stories

Bypassing the insulin highway

Apr 28, 2008

An immune cell known as a neutrophil releases a protein that can suppress glucose production in the liver –without targeting insulin, researchers have found.

Be Aware of Blood Sugar Post Gastric Bypass

Jan 04, 2010

(PhysOrg.com) -- People with type 2 diabetes who have gastric bypass surgery often leave the hospital without the need for previously prescribed diabetes medications.

Recommended for you

New ALS associated gene identified using innovative strategy

16 hours ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

16 hours ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

17 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

Brain simulation raises questions

20 hours ago

What does it mean to simulate the human brain? Why is it important to do so? And is it even possible to simulate the brain separately from the body it exists in? These questions are discussed in a new paper ...

User comments