Researchers indentify a cell-permeable peptide that inhibits hepatitis C

January 31, 2012

Researchers from UCLA's Jonsson Comprehensive Cancer Center have identified a cell-permeable peptide that inhibits a hepatitis C virus protein and blocks viral replication, which can lead to liver cancer and cirrhosis.

This finding by Dr. Samuel French, an assistant professor of pathology and senior author of the study, builds on previous work by the French laboratory that identified two that are important factors in infection.

French and his team initially set out to identify the cellular factors involved in hepatitis C replication and, using , found that (HSPs) 40 and 70 were important for viral infection. HSP70 was previously known to be involved, but HSP40 was linked for the first time to , French said. They further showed that the Quercetin, which inhibits the synthesis of these proteins, significantly inhibits viral infection in tissue culture.

In this study, published Jan. 30, 2012 in the peer-reviewed journal Hepatology, French and his team demonstrated that the viral non-structural protein 5A (NS5A) directly binds to HSP70 and mapped the site of the NS5A/HSP70 complex on NS5A. While HSP70 was previously shown to bind NS5A in cells, a direct NS5A/HSP70 interaction and complex formation was established in this study. In an effort to stop this interaction, they tested peptides that might inhibit HSP70.

"This is important because we've developed a small peptide that binds to that site and blocks the interaction between the proteins that is important for ," French said. "This is another, potentially highly efficacious way to block replication of hepatitis C."

An estimated 160 million people worldwide are infected with hepatitis C and the conventional treatments – interferon and ribavirin – can have significant side effects. A new drug targeting cellular proteins rather than viral proteins would be a valuable addition to the treatment arsenal, French said.

"We were surprised that this peptide works this well," French said. "While its mechanism is different, the activity of this peptide is comparable to other newly developed anti-virals."

The study, done in tissue culture, shows that the peptide gains entry into the cell easily and blocks the cascade of cellular events that allows the virus to replicate, French said. Blocking the HSP70 protein rather than a viral protein also reduces the chance of patients with the hepatitis C virus developing resistance to the peptide.

"There's no direct pressure on the virus, so it is less likely to mutate and develop resistance," French said. "The goal is to achieve a sustained response, essentially a cure, meaning there is no more virus replication. There are a lot of drugs coming out now that are designed to stop hepatitis C replication, but resistance is still an issue. About 10 to 20 percent of patients on the new drugs become resistant. This new peptide may help combat resistance."

Going forward, French and his team are testing variants of the newly discovered peptide to see if they can develop one with an even higher affinity and can decrease the size of the peptide to improve cellular penetration and liver targeting. The new and improved peptides will be tested in animal models.

This peptide "may be a candidate for therapy," the study states. "Considering the potency of the peptide in suppressing viral translation levels, treatment with this peptide may significantly improve the efficacy of conventional treatments in patients who become resistant to conventional therapies."

Related Stories

Recommended for you

Experimental MERS vaccine shows promise in animal studies

July 28, 2015

A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines. ...

Can social isolation fuel epidemics?

July 21, 2015

Conventional wisdom has it that the more people stay within their own social groups and avoid others, the less likely it is small disease outbreaks turn into full-blown epidemics. But the conventional wisdom is wrong, according ...

Lack of knowledge on animal disease leaves humans at risk

July 20, 2015

Researchers from the University of Sydney have painted the most detailed picture to date of major infectious diseases shared between wildlife and livestock, and found a huge gap in knowledge about diseases which could spread ...

IBD genetically similar in Europeans and non-Europeans

July 20, 2015

The first genetic study of inflammatory bowel disease (IBD) to include individuals from diverse populations has shown that the regions of the genome underlying the disease are consistent around the world. This study, conducted ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.