Protein in the brain could be a key target in controlling Alzheimer's

January 25, 2012

A protein recently discovered in the brain could play a key role in regulating the creation of amyloid beta, the major component of plaques implicated in the development of Alzheimer's disease, according to researchers at Temple University's School of Medicine.

A group led by Domenico Pratico, professor of and microbiology and immunology at Temple, discovered the presence of the , called 12/15-Lipoxygenase, in the brain three years ago.

"We found this protein to be very active in the brains of people who have Alzheimer's disease," said Pratico. "But three years ago, we didn't know the role it played in the development of the disease."

Following two years of study, the Temple researchers have found that the protein is at the top of a and controls a biochemical that begins the development of Alzheimer's. They have published their findings, "Transcriptional Regulation of ßsecretase-1 by 12/15 Lipoxygenase Results in Enhanced Amyloidogenesis and Cognitive Impairments," in the journal Annals of Neurology.

Pratico said that their research has shown that 12/15-Lipoxygenase controls Beta secretase (BACE-1), an enzyme that is key to the development of amyloid plaques in Alzheimer's patients.

"For reasons we don't yet know, in some people, 12/15-Lipoxygenase starts to work too much," he said. "By working too much, it sends the wrong message to the Beta secretase, which in turn starts to produce more amyloid Beta. This initially results in cognitive impairment, memory impairment and, later, an increase of amyloid ."

BACE-1 has long been a biological target for researchers seeking to create a drug against , said Pratico. But because little has been known about how it functions, they have been unsuccessful developing a molecule that could reach the brain and block it.

"We now know much better how Beta secretase works because we have found that the 12/15-Lipoxygenase protein is a controller of BACE functions," he said. "You don't need to target the Beta secretase directly because the 12/15-Lipoxygenase is really the system in the brain that tells BACE to work more or work less."

Pratico said that they have validated 12/15-Lipoxygenase as a target for a potential Alzheimer drug or therapy.

"By modulating BACE levels and activity through controlling the 12/15-Lipoxygenase, we can potentially improve the cognitive part of the phenotype of the disease, and prevent the accumulation of amyloid beta inside the neurons, which will eventually translate into less of those plaques," he said. "This is a totally new mechanism for controlling BACE."

Pratico said his group has looked at an experimental compound that blocks 12/15-Lipoxygenase function as a potential therapy to inhibit BACE function in the brain. In their lab, using animal models, they saw the drug's ability to restore some cognitive function, as well as improve learning and memory ability.

"There is an opportunity here to study this molecule and develop an even stronger molecule to target 12/15-Lipoxygenase function in the ," he said.

Explore further: Road block as a new strategy for the treatment of Alzheimer's

Related Stories

Road block as a new strategy for the treatment of Alzheimer's

August 22, 2011

Blocking a transport pathway through the brain cells offers new prospects to prevent the development of Alzheimer's. Wim Annaert and colleagues of VIB and K.U. Leuven discovered that two main agents involved in the inception ...

Recommended for you

Scientists identify neurons devoted to social memory

September 30, 2016

Mice have brain cells that are dedicated to storing memories of other mice, according to a new study from MIT neuroscientists. These cells, found in a region of the hippocampus known as the ventral CA1, store "social memories" ...

Throwing light on the brain's perception of transparency

September 30, 2016

Researchers have created a new optical illusion that helps reveal how our brains determine the material properties of objects – such as whether they are transparent, shiny, matte or translucent – just from looking at ...

Scientists track unexpected mechanisms of memory

September 29, 2016

Do you remember Simone Biles's epic gymnastics floor routine that earned her a fifth Olympic medal? Our brains hold on to memories like these via physical changes in synapses, the tiny connections between neurons.

Some brains are blind to moving objects

September 28, 2016

As many as half of people are blind to motion in some part of their field of vision, but the deficit doesn't have anything to do with the eyes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.