New research reveals how alpha-synuclein interacts with cell membranes in Parkinson's disease

The accumulation of α-synuclein, a small, negatively charged protein, in neural cells, is one of the hallmarks of Parkinson's disease. It has been suggested that oligomeric α-synuclein causes membranes to become permeable, or to form channels on the outer cell membrane. Now, a group of scientists from Sweden has found a way to reliably replicate α-synuclein aggregation on cell membranes to investigate how different forms of α-synuclein interact with membranes under different conditions and to learn if any of the α-synuclein species can penetrate these membranes. Their results are published in the current issue of the Journal of Parkinson's Disease.

"We found that on-pathway oligomers and α-synuclein fibrils associate with negatively charged model membranes. Furthermore, when investigating seeded α-synuclein aggregation in the presence of giant unilamellar vesicles (GUVs), we find lipid and α-synuclein co-localized in the GUV membrane," explains lead author Marie Grey, of Lund University and the Wallenberg Neuroscience Center in Lund, Sweden. "Importantly, no transport of α-synuclein was seen, indicating that the ability of α-synuclein to enter cells is more complex than diffusive transport over cell membranes."

The scientists generated GUVs containing a small amount of a lipid-conjugated red emitting dye (rhodamine B) and varied the membrane charge by using different molecular ratios of phosphatidyl choline (DOPC), a common phospholipid in human cell membranes with a neutral charge, with the negatively charged lipids phosphatidyl serine (DOPS), a major component of the plasma membrane in human cells, or cardiolipin (CL), abundant in mitochondrial membranes. They then used confocal fluorescence microcopy to examine how monomer, fibril, and on-pathway α-synuclein species labeled with a green emitting fluorophore interacted with phospholipid bilayers of the GUV. The study achieved unique, reproducible aggregation without addition of stirring bars, chemicals, and vigorous shaking as had been used in previous studies. These gentler methods make the results more physiologically relevant while still yielding the desired reproducibility.

"On-pathway oligomers are difficult to isolate and enrich due to their dynamic nature. Using our reproducible protocol, we could compare the outcome when adding the different species of α-synuclein to the GUVs," notes Dr. Grey.

The researchers found that on-pathway and aggregated forms of α-synuclein species bound to lipid membranes, but α-synuclein monomers did not. α-synuclein was particularly strongly associated with GUVs containing the negatively charged anionic lipids CL or DOPS, but did not associate with GUVs containing only the neutrally charged DOPC. α-synuclein progressively accumulated at the surface of the GUVs, typically in distinct areas rather than uniformly covering the membrane. They did not observe transport of α-synuclein over the GUV bilayer.

"Our results indicate that alpha-synuclein does not readily traverse any biological lipid membrane, but that there most likely are required proteins that regulate the transport, possibly with some degree of specificity. This is good news for future attempts to develop treatments that prevent transport of synuclein across membranes, as proteins provide better drug targets than do lipid membrane constituents," concludes Dr. Grey.

More information: The article is "Membrane Interaction of α-Synuclein in Different Aggregation States," by M. Grey, S. Linse, H. Nilsson, P. Brundin, and E. Sparr. Journal of Parkinson's Disease. 1(2011) 359-371. DOI 10.3233/JPD-2011-11067

Related Stories

Over-abundant protein prompts neurodegenerative cascade

Jun 15, 2010

In diverse neurodegenerative diseases ranging from Parkinson's to Alzheimer's, researchers have long noted accumulations of a little-understood neuronal protein called α-synuclein. Pathological and genetic evidence strongly ...

Recommended for you

Where Ebola battles are won

2 hours ago

(HealthDay)—Four hospitals that are home to advanced biocontainment facilities have become America's ground zero in the treatment of Ebola patients.

Depression tied to worse lumbar spine surgery outcomes

5 hours ago

(HealthDay)—Depressive symptoms are associated with poorer long-term outcome in patients undergoing surgery for lumbar spinal stenosis (LSS), according to research published in the Oct. 1 issue of The Sp ...

Ebola death toll edging to 4,900 mark: WHO

5 hours ago

The death toll in the world's worst-ever Ebola outbreak has edged closer to 4,900, while almost 10,000 people have now been infected, new figures from the World Health Organization showed Wednesday.

US to track everyone coming from Ebola nations

6 hours ago

U.S. authorities said Wednesday that everyone traveling into the U.S. from Ebola-stricken nations will be monitored for symptoms for 21 days. That includes returning American aid workers, federal health employees ...

User comments