Scientists report first step in strategy for cell replacement therapy in Parkinson's disease

January 24, 2012

Induced pluripotent stem cells (iPSC) are a promising avenue for cell replacement therapy in neurologic diseases. For example, mouse and human iPSCs have been used to generate dopaminergic (DA) neurons that improve symptoms in rat Parkinson's disease models. Reporting in the current issue of the Journal of Parkinson's Disease, a group of scientists from Japan evaluated the growth, differentiation, and function of human-derived iPSC-derived neural progenitor cells (NPCs) in a primate model, elucidating their therapeutic potential.

"We developed a series of methods to induce human iPSCs to become NPCs, using a feeder-free culture method, and grafted NPCs at different stages of differentiation into the brain of a monkey PD model," explains lead investigator Jun Takahashi, MD, PhD, of Kyoto University. "We developed a method to evaluate the growth and DA activity of the grafts using (MRI), tomography (PET), immunocytochemistry, and behavioral analyses, all of which will be useful in preclinical research."

Investigators grafted human iPSCs into the brains of and a monkey treated with MPTP, a neurotoxin that causes Parkinson's symptoms. They found that iPSCs incubated in feeder-free culture generated functional midbrain DA neurons. "In previous studies, midbrain DA neurons were induced from human iPSCs, but the method required coculture with stromal mouse feeder cells or Matrigel," noted Dr. Takahashi. "Our feeder-free method would be more suitable for clinical use."

Pre-treatment with growth factors was required to promote the maturation of functional DA neurons in vivo. MRI and PET imaging allowed real-time monitoring of in vivo cell proliferation and activity. The study demonstrates that dopamine synthesis, transport, and reuptake reflect DA activity in the grafted NPCs, an approach that can also be used in human patients.

"Our results contribute to the evaluation of the survival, differentiation, and function of human iPSC-derived neuronal cells in a primate PD model. Although we have to perform additional preclinical studies using more primate models before clinical application, we believe our findings contribute as the first step for developing a strategy for cell replacement therapy in Parkinson's disease," Dr. Takahashi concludes.

Explore further: Replacing the cells lost in Parkinson disease

More information: The article is "Transplantation of Human Induced Pluripotent Stem Cell-Derived Midbrain Dopaminergic Neurons into the Brain of a Primate Model in Parkinson's Disease," by T. Kikuchi, A. Morizane, D. Doi, H. Onoe, T. Hayashi, T. Kawasaki, H. Saiki, S. Miyamoto, and J. Takahashi. Journal of Parkinson's Disease. 1(2011) 395-412. DOI: 10.3233/JPD-2011-11070

Related Stories

Replacing the cells lost in Parkinson disease

December 3, 2007

Parkinson disease (PD) is caused by the progressive degeneration of brain cells known as dopamine (DA) cells. Replacing these cells is considered a promising therapeutic strategy. Although DA cell–replacement therapy by ...

Reprogrammed mouse fibroblasts can make a whole mouse

July 23, 2009

In a paper publishing online July 23 in Cell Stem Cell, a Cell Press journal, Dr. Shaorong Gao and colleagues from the National Institute of Biological Sciences in Beijing, China, report an important advance in the characterization ...

Rethinking reprogramming: A new way to make stem cells

April 7, 2011

A paper published by Cell Press in the April 8th issue of the journal Cell Stem Cell reveals a new and more efficient method for reprogramming adult mouse and human cells into an embryonic stem cell-like state and could lead ...

Induced pluripotent stem cells at risk for rejection

May 13, 2011

(PhysOrg.com) -- Biologists at UC San Diego have discovered that an important class of stem cells known as "induced pluripotent stem cells," or iPSCs, derived from an individual's own cells, could face immune rejection problems ...

Recommended for you

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.