Scientists report first step in strategy for cell replacement therapy in Parkinson's disease

Induced pluripotent stem cells (iPSC) are a promising avenue for cell replacement therapy in neurologic diseases. For example, mouse and human iPSCs have been used to generate dopaminergic (DA) neurons that improve symptoms in rat Parkinson's disease models. Reporting in the current issue of the Journal of Parkinson's Disease, a group of scientists from Japan evaluated the growth, differentiation, and function of human-derived iPSC-derived neural progenitor cells (NPCs) in a primate model, elucidating their therapeutic potential.

"We developed a series of methods to induce human iPSCs to become NPCs, using a feeder-free culture method, and grafted NPCs at different stages of differentiation into the brain of a monkey PD model," explains lead investigator Jun Takahashi, MD, PhD, of Kyoto University. "We developed a method to evaluate the growth and DA activity of the grafts using (MRI), tomography (PET), immunocytochemistry, and behavioral analyses, all of which will be useful in preclinical research."

Investigators grafted human iPSCs into the brains of and a monkey treated with MPTP, a neurotoxin that causes Parkinson's symptoms. They found that iPSCs incubated in feeder-free culture generated functional midbrain DA neurons. "In previous studies, midbrain DA neurons were induced from human iPSCs, but the method required coculture with stromal mouse feeder cells or Matrigel," noted Dr. Takahashi. "Our feeder-free method would be more suitable for clinical use."

Pre-treatment with growth factors was required to promote the maturation of functional DA neurons in vivo. MRI and PET imaging allowed real-time monitoring of in vivo cell proliferation and activity. The study demonstrates that dopamine synthesis, transport, and reuptake reflect DA activity in the grafted NPCs, an approach that can also be used in human patients.

"Our results contribute to the evaluation of the survival, differentiation, and function of human iPSC-derived neuronal cells in a primate PD model. Although we have to perform additional preclinical studies using more primate models before clinical application, we believe our findings contribute as the first step for developing a strategy for cell replacement therapy in Parkinson's disease," Dr. Takahashi concludes.

More information: The article is "Transplantation of Human Induced Pluripotent Stem Cell-Derived Midbrain Dopaminergic Neurons into the Brain of a Primate Model in Parkinson's Disease," by T. Kikuchi, A. Morizane, D. Doi, H. Onoe, T. Hayashi, T. Kawasaki, H. Saiki, S. Miyamoto, and J. Takahashi. Journal of Parkinson's Disease. 1(2011) 395-412. DOI: 10.3233/JPD-2011-11070

add to favorites email to friend print save as pdf

Related Stories

Replacing the cells lost in Parkinson disease

Dec 03, 2007

Parkinson disease (PD) is caused by the progressive degeneration of brain cells known as dopamine (DA) cells. Replacing these cells is considered a promising therapeutic strategy. Although DA cell–replacement therapy by ...

Induced pluripotent stem cells at risk for rejection

May 13, 2011

(PhysOrg.com) -- Biologists at UC San Diego have discovered that an important class of stem cells known as "induced pluripotent stem cells," or iPSCs, derived from an individual's own cells, could face immune ...

Rethinking reprogramming: A new way to make stem cells

Apr 07, 2011

A paper published by Cell Press in the April 8th issue of the journal Cell Stem Cell reveals a new and more efficient method for reprogramming adult mouse and human cells into an embryonic stem cell-like state and could ...

Recommended for you

Team untangles the biological effects of blue light

11 hours ago

Blue light can both set the mood and set in motion important biological responses. Researchers at the University of Pennsylvania's School of Medicine and School of Arts and Sciences have teased apart the ...

Mouse model provides new insight in to preeclampsia

12 hours ago

Worldwide, preeclampsia is a leading cause of maternal deaths and preterm births. This serious pregnancy complication results in extremely high blood pressure and organ damage. The onset of preeclampsia is associated with ...

User comments