Memory formation triggered by stem cell development

Researchers at the RIKEN-MIT Center for Neural Circuit Genetics have discovered an answer to the long-standing mystery of how brain cells can both remember new memories while also maintaining older ones.

They found that specific neurons in a brain region called the dentate gyrus serve distinct roles in depending on whether the that produced them were of old versus young age.

The study will appear in the March 30 issue of Cell and links the cellular basis of memory formation to the birth of new neurons -- a finding that could unlock a new class of to treat .

The findings also suggest that an imbalance between young and old neurons in the brain could disrupt normal memory formation during post-traumatic stress disorder (PTSD) and aging. "In animals, traumatic experiences and aging often lead to decline of the birth of new neurons in the dentate gyrus. In humans, recent studies found dentate gyrus dysfunction and related memory impairments during normal aging," said the study's senior author Susumu Tonegawa, 1987 and Director of the RIKEN-MIT Center.

Other authors include Toshiaki Nakashiba and researchers from the RIKEN-MIT Center and Picower Institute at MIT; the laboratory of Michael S. Fanselow at the University of California at Los Angeles; and the laboratory of Chris J. McBain at the National Institute of Child Health and Human Development.

In the study, the authors tested mice in two types of . Pattern separation is the process by which the brain distinguishes differences between similar events, like remembering two Madeleine cookies with different tastes. In contrast, pattern completion is used to recall detailed content of memories based on limited clues, like recalling who one was with when remembering the taste of the Madeleine cookies.

Pattern separation forms distinct based on differences between experiences; pattern completion retrieves memories by detecting similarities. Individuals with brain injury or trauma may be unable to recall people they see every day. Others with PTSD are unable to forget terrible events. "Impaired pattern separation due to the loss of young neurons may shift the balance in favor of pattern completion, which may underlie recurrent traumatic memory recall observed in PTSD patients," Tonegawa said.

Neuroscientists have long thought these two opposing and potentially competing processes occur in different neural circuits. The dentate gyrus, a structure with remarkable plasticity within the nervous system and its role in conditions from depression to epilepsy to traumatic brain injury -- was thought to be engaged in pattern separation and the CA3 region in pattern completion. Instead, the MIT researchers found that neurons may perform pattern separation or completion depending on the age of their cells.

The MIT researchers assessed pattern separation in mice who learned to distinguish between two similar but distinct chambers: one safe and the other associated with an unpleasant foot shock. To test their pattern completion abilities, the mice were given limited cues to escape a maze they had previously learned to negotiate. Normal mice were compared with mice lacking either young neurons or old neurons. The mice exhibited defects in pattern completion or separation depending on which set of neurons was removed.

"By studying mice genetically modified to block neuronal communication from old neurons -- or by wiping out their adult-born young neurons -- we found that old neurons were dispensable for pattern separation, whereas young neurons were required for it," co-author Toshiaki Nakashiba said. "Our data also demonstrated that mice devoid of old neurons were defective in pattern completion, suggesting that the balance between pattern separation and completion may be altered as a result of loss of old ."

add to favorites email to friend print save as pdf

Related Stories

How brain injury leads to seizures, memory problems

Oct 18, 2006

In a finding that may provide a scientific basis for eventual treatment, neurology researchers have shown that traumatic brain injury reduces the level of a protein that helps keep brain activity in balance. The resulting ...

Newborn brain cells show the way

Jul 09, 2009

Although the fact that we generate new brain cells throughout life is no longer disputed, their purpose has been the topic of much debate. Now, an international collaboration of researchers made a big leap ...

Sleep helps build long-term memories

Jun 24, 2009

(PhysOrg.com) -- Experts have long suspected that part of the process of turning fleeting short-term memories into lasting long-term memories occurs during sleep. Now, researchers at the RIKEN-MIT Center for ...

Newborn brain cells 'time-stamp' memories

Jan 28, 2009

"Remember when...?" is how many a wistful trip down memory lane begins. But just how the brain keeps tabs on what happened and when is still a matter of speculation. A computational model developed by scientists at the Salk ...

Recommended for you

New ALS associated gene identified using innovative strategy

22 hours ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

22 hours ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

23 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

User comments