BGI achieves next-gen sequencing analysis of FFPE DNA as low as 200 ng

BGI, the world's largest genomics organization, reported that it can use next-generation sequencing to analyze DNA as low as 200 ng from formalin-fixed paraffin-embedded (FFPE) samples. This advancement enables researchers to easily identify the genetic details and pathology mechanism of FFPE disease samples, especially for some rare tumors, with higher accuracy and reliability than existing techniques.

FFPE samples are common for disease diagnoses and scientific research. Because FFPE tissue samples may be stored indefinitely at room temperature, and (both DNA and RNA) may be recovered after decades from the original fixation, they have become an important resource for historical studies in medicine. There are millions of FFPE samples stored worldwide containing significant genetic information for disease and medical research.

With the rapid development of genomics, the ability to sequence FFPE samples opens up large tissue collections from clinical trials for genetic analysis that could help researchers identify novel variations that are linked to disease development. However, during the sample preparation and storage process, formaldehyde can induce modification of nucleotide molecules, such as , DNA-protein cross-links (DPC), among others. This hampers further application and development of sequencing in exploring the of diseases.

Recently, BGI researchers have made a breakthrough on FFPE DNA sequencing by achieving optimization of FFPE construction with total DNA degraded to as low as 200 ng. "This is a critical step toward better decoding the potential genetic information of FFPE samples," said Xun Zhao, staff scientist from BGI Department of DNA Sequencing. "In order to fully understand the heterogeneity and special properties of FFPE samples, we hope to conduct more FFPE DNA sequencing projects with collaborators worldwide to further enhance and standardize our technique."

"We expect that next-generation sequencing technologies with FFPE samples could substantially facilitate our understanding of undefined pathological mechanisms and broaden our insights in biomedical research," added Zhao. "This also strengthens the confidence of researchers in pharmaceutical and disease areas, especially when samples are limited."

add to favorites email to friend print save as pdf

Related Stories

Single-cell sequencing leads to a new era of cancer research

Mar 02, 2012

BGI, the world's largest genomics organization, developed single-cell genome sequencing technology and published two research papers for cancer single-cell sequencing in the research journal Cell. In the papers, which were p ...

Researchers find extensive RNA editing in human transcriptome

Feb 12, 2012

In a new study published online in Nature Biotechnology, researchers from BGI, the world's largest genomics organization, reported the evidence of extensive RNA editing in a human cell line by analysis of RNA-seq data, demons ...

Recommended for you

A nucleotide change could initiate fragile X syndrome

22 hours ago

Researchers reveal how the alteration of a single nucleotide—the basic building block of DNA—could initiate fragile X syndrome, the most common inherited form of intellectual disability. The study appears ...

Gene clues to glaucoma risk

Aug 31, 2014

Scientists on Sunday said they had identified six genetic variants linked to glaucoma, a discovery that should help earlier diagnosis and better treatment for this often-debilitating eye disease.

Mutation disables innate immune system

Aug 29, 2014

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

Aug 28, 2014

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

User comments