Researchers validate the potential of a protein for the treatment of type 2 diabetes

This shows hepatic cells isolated from healthy mice and mice deficient in Mitofusin 2 (right). Morphology of mitochondria (red), more rounded, is altered in the image on the right Credit: Antonio Zorzano laboratory (IRB Barcelona)

Researchers at the Institute for Research in Biomedicine (IRB Barcelona, Spain)) have discovered that deficiency of a single protein, Mitofusin 2, in muscle and hepatic cells of mice is sufficient to cause tissues to become insensitive to insulin, thus producing an increase in blood glucose concentrations. These are the two most common conditions prior to development of diabetes type 2. Published in this week's issue of Proceedings of the National Academy of Sciences (PNAS), the study validates Mitofusin 2 as a possible target for the treatment of diabetes type 2.

"Resistance to insulin plays a key role in the development of diabetes mellitus, dyslipidemia (alteration of lipid concentrations) and obesity. Mitofusin 2 may provide a specific target for the development of drugs that could hold back a disease that affects millions of people worldwide", explains the head of the study, Antonio Zorzano, full professor of the University of Barcelona, coordinator of the Molecular Medicine Programme at IRB Barcelona, and head of the Heterogenic and Polygenic Diseases lab at the same centre.

The estimates that there will be 350 million people suffering from diabetes in 2020. Diabetes type 2 accounts for 90% of diabetes cases and is due to a great extent to , poor nutrition and sedentary lifestyle. According to the Spanish Society of Diabetes, in Spain 6.5% of the current population between 30 and 65 years has this disease and about 11.6 % of Spaniards are at risk of developing it.

Previous studies performed at IRB Barcelona demonstrate that both obese and subjects have low levels of muscle Mitofusin 2. This protein controls the in the liver and muscles. The scientists have observed that deficiency of this protein causes alterations in mitochondria and the endoplasmic reticulum, two crucial organelles for correct cell functioning. "We have shown that the accumulation of dysfunctions in these two structures alters cell behavior and favors the appearance of pre-diabetes symptoms", say the main authors of the article, David Sebastián and María Isabel Hernández-Álvarez, post-doctoral fellows in Zorzano's team.

More information: PNAS (2012): Doi:10.1073/pnas.1108220109

add to favorites email to friend print save as pdf

Related Stories

Stem cell research uncovers mechanism for type 2 diabetes

Feb 12, 2009

Taking clues from their stem cell research, investigators at the University of California San Diego (UC San Diego) and Burnham Institute for Medical Research (Burnham) have discovered that a signaling pathway involved in ...

Recommended for you

Blood glucose levels set for achieving HbA1c targets

Apr 11, 2014

(HealthDay)—The average self-monitored blood glucose (SMBG) concentrations needed at premeal, postmeal, and bedtime have been established to achieve a range of hemoglobin A1c (HbA1c) targets, according ...

Women with diabetes less likely to have a mammogram

Apr 11, 2014

Women with diabetes are 14 per cent less likely to be screened for breast cancer compared to women without diabetes, according to a study by researchers at the Institute for Clinical Evaluative Sciences (ICES) and Women's ...

Nonalcoholic fatty liver disease linked to CKD in T1DM

Apr 09, 2014

(HealthDay)—For patients with type 1 diabetes, nonalcoholic fatty liver disease (NAFLD) is independently associated with the risk of incident chronic kidney disease (CKD), according to a study published ...

Common diabetes treatment could extend hypoglycaemia

Apr 08, 2014

(Medical Xpress)—Researchers at the University of Adelaide have discovered that a common treatment for people with type 2 diabetes could cause longer-than-normal periods of the low blood sugar reaction hypoglycaemia, which ...

User comments