Two repressor genes identified as essential for placental development

Two particular repressor genes in a family of regulatory genes are vital for controlling cell proliferation during development of the placenta, according to a new study by researchers with the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James).

The two genes are called E2f7 and E2f8. Their absence in stem cells results in a placenta made up of overcrowded and poorly organized cells that cannot properly transport oxygen and nutrients or support normal embryonic development.

When placental stem cells were also missing a third gene, the activating gene called E2f3a, the placental defects were corrected and embryos carried to birth.

The findings, published in the journal Developmental Cell, shows at the molecular level how these E2Fs control in intact animals, the researchers say.

"The findings provide insight into the role of these two repressor genes," says principal investigators Gustavo Leone, associate professor of Medicine and associate director of Basic Research.

The two genes belong to a family of regulatory genes that, in humans, has eight members. They are all believed to activate or suppress other genes to control cell division and proliferation in both normal and cancer cells. But which genes they regulate and how they interact with one another in living animals is poorly understood.

"E2F regulatory genes have been thought to be important for a long time, but with so many of them, it's been hard to tell which one is doing what," Leone says.

"Here, we show that the repressors E2f7 and E2f8 are essential for the development of an intact, functional, placenta, and that they balance out the effects of the activating gene E2f3a," Leone says. "Because these two repressors are important for proliferation, they may also play an important role in suppressing tumor development."

For this study, Leone and his colleagues used animal models that lacked one or more of the three E2F in trophoblast , which give rise to the .

Earlier work led by Leone has shown that in some cases, an E2F gene can be an activator in some tissues and a repressor in others.

Provided by Ohio State University Medical Center

not rated yet

Related Stories

Stem-cell activators switch function, repress mature cells

Dec 16, 2009

In a developing animal, stem cells proliferate and differentiate to form the organs needed for life. A new study shows how a crucial step in this process happens and how a reversal of that step contributes to cancer.

Recommended for you

Science of romantic relationships includes gene factor

13 hours ago

(Medical Xpress)—Adolescents worry about passing tests, winning games, lost phones, fractured bones—and whether or not they will ever really fall in love. Three Chinese researchers have focused on that ...

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.