Researchers complete the first epigenome in Europe

May 30, 2012

A study led by Manel Esteller, director of the Epigenetics and Cancer Biology Program at the Bellvitge Biomedical Research Institute (IDIBELL), professor of genetics at the University of Barcelona and ICREA researcher, has completed the first epigenome in Europe. The finding is published in the latest issue of the international scientific journal Epigenetics.

The genome of all cells in the human body is the same for all of them, regardless their aspect and functions. Therefore, genome cannot fully explain the activity of tissues and organs and their disorders in complex diseases like cancer. It takes a further explanation. Part of this explanation is provided by epigenetics, a field of biology that studies the activity of DNA that does not involve changes in its sequence. That is, if genetics is the alphabet, epigenetics is the spelling that guides the activity of our cells.

Methylation

Epigenetics refers to in our and proteins that regulate it. The best-known epigenetic mark is the methylation, the addition of a methyl chemical group (-CH3) in our DNA. The epigenome consists of all the epigenetic marks of a living being.

The authors of the study have completed the for all brands of methylation of DNA from of two girls: a healthy one and a patient suffering from a called Immunodeficiency, Centromere instability and Facial anomalies syndrome (ICF). This disease is caused by a mutation in a gene that causes the addition of a methyl chemical group in its DNA.

The analysis performed by the researchers reveals that the patient has an epigenomic defect that causes fragility of chromosomes, which thus can easily be broken. In addition, the study shows that the patient has a wrong epigenetic control of many genes related to the response against infection, which causes a severe .

The study coordinator, Manel Esteller, emphasizes that due to this study, "we now know what happens in this type of rare diseases and we can start thinking about strategies for new treatments based on this knowledge."

Dr. Esteller is an international leader in the field of epigenetics. His work has been crucial to show that all human tumours have in common a specific chemical alteration: the hypermethylation of tumour suppressor genes. Since 2008 is the director of the Epigenetics and Cancer Biology Program at IDIBELL.

More information: Heyn H, Vidal E, Sayols S, Sanchez-Mut JV, Moran S, Medina I, Sandoval J, Simó-Riudalbas L, Szczesna K, Huertas D, Gatto S, Matarazzo MR, Dopazo J, Esteller M. Whole-genome bisulfite DNA sequencing of a DNMT3B mutant patient. Epigenetics, June 1, 2012.

Related Stories

Why cancer cells change their appearance?

September 2, 2011

Like snakes, tumour cells shed their skin. Cancer is not a static disease but during its development the disease accumulates changes to evade natural defences adapting to new environmental circumstances, protecting against ...

Recommended for you

Study identifies 'major player' in skin cancer genes

July 27, 2015

A multidisciplinary team at Yale, led by Yale Cancer Center members, has defined a subgroup of genetic mutations that are present in a significant number of melanoma skin cancer cases. Their findings shed light on an important ...

Researchers find gene associated with thinking skills

July 15, 2015

An international team of researchers, including investigators from the University of Mississippi Medical Center (UMMC), has identified a gene that underlies healthy information processing—a first step on a complicated road ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.