Intestinal bacteria produce neurotransmitter, could play role in inflammation

Researchers at Baylor College of Medicine and Texas Children's Hospital have identified commensal bacteria in the human intestine that produce a neurotransmitter that may play a role in preventing or treating inflammatory bowel diseases such as Crohn's disease.

"We identified, to our knowledge, the first bifidobacterial strain, Bifidobacterium dentium, that is capable of secreting large amounts of gamma-aminobutyric acid (GABA). This molecule is a major in the central and enteric nervous systems," says Karina Pokusaeva, a researcher on the study and a member of the laboratory of James Versalovic.

GABA is one of the chief inhibitory neurotransmitters in the human . It plays a role in regulating pain and some pain relieving drugs currently on the market act by targeting GABA receptors on .

Pokusaeva and her colleagues were interested in understanding the role the human microbiome might play in pain and scanned the genomes of potentially beneficial intestinal microorganisms, identified by the Human Microbiome Project, for evidence of a gene that would allow them to create GABA.

"Lab analysis of metagenomic DNA sequencing data allowed us to demonstrate that microbial glutamate decarboxylase encoding gene is very abundant in intestinal as compared to other body sites," says Pokusaeva. One of the most prolific producers of GABA was B. dentium, which appears to secrete the compound to help it survive the acid environment.

In addition to its pain modulating properties, GABA may also be capable of inhibiting inflammation. Recent studies have shown that immune cells called macrophages also possess GABA receptors. When these receptors were activated on the macrophages there was a decrease in the production of compounds responsible for inflammation.

"Our lab was curious to explore if GABA produced by intestinal human isolate B. dentium could have an effect on GABA receptors present in immune cells," says Pokusaeva. Together with their collaborators Dr. Yamada and Dr. Lacorazza they found that when the cells were exposed to secretions from the bacteria, they exhibited increased expression of the GABAA receptor in the .

While the findings are preliminary, they suggest the possibility that B. dentium and the compounds it secretes could play a role in reducing inflammation associated with inflammatory bowel diseases.

The next step, says Pokusaeva is to conduct in vitro experiments to determine if the increased GABAA expression correlates with a decrease in production of cytokines associated with inflammation. GABAA receptor signaling may also contribute to pain signaling in the gut and may somehow be involved in abdominal pain disorders.

"Our preliminary findings suggest that Bifidobacterium dentium could potentially have an inhibitory role in inflammation; however more research has to be performed to further prove our hypothesis," says Pokusaeva.

More information: This research was presented as part of the 2012 General Meeting of the American Society for Microbiology held June 16-19, 2012 in San Francisco, California.

add to favorites email to friend print save as pdf

Related Stories

A step forward in targeted pain therapy

Jan 22, 2008

Our bodies sense painful stimuli through certain receptors located in the skin, in joints and many internal organs. Specialized nerve fibers relay these signals coming from the periphery to the brain, where pain becomes conscious. ...

Conducting how neurons fire

Nov 25, 2011

Contrary to expectations that the neurotransmitter GABA only inhibited neuronal firing in the adult brain, RIKEN-led research has shown that it can also excite interneurons in the hippocampus of the rat brain ...

GABA deficits disturb endocannabinoid system

Jan 24, 2012

Changes in the endocannabinoid system may have important implications for psychiatric and addiction disorders. This brain system is responsible for making substances that have effects on brain function which resemble those ...

Recommended for you

Phthalates heighten risk for childhood asthma

Sep 17, 2014

Researchers at the Columbia Center for Children's Environmental Health at the Mailman School of Public Health are the first to demonstrate an association between childhood asthma and prenatal exposure to two phthalates used ...

ERS: Mepolizumab is glucocorticoid-sparing in asthma

Sep 09, 2014

(HealthDay)—For patients with eosinophilic asthma, mepolizumab has a glucocorticoid-sparing effect and reduces exacerbations when administered intravenously or subcutaneously, according to two studies published ...

User comments