Brain center for social choices discovered in a poker study

July 5, 2012
brain

Although many areas of the human brain are devoted to social tasks like detecting another person nearby, a new study has found that one small region carries information only for decisions during social interactions. Specifically, the area is active when we encounter a worthy opponent and decide whether to deceive them.

A brain imaging study conducted by researchers at the Duke Center for Interdisciplinary Decision Science (D-CIDES) put human subjects through a functional while playing a simplified game of poker against a computer and human opponents. Using to sort out what amount of each area of the brain was processing, the team found only one brain region -- the temporal-parietal junction, or TPJ --- carried information that was unique to decisions against the human opponent.

Some of the time, the subjects were dealt an obviously weak hand. The researchers wanted to see whether they could watch the player calculate whether to bluff his opponent. The in the TPJ told the researchers whether the subject would soon bluff against a human opponent, especially if that opponent was judged to be skilled. But against a computer, signals in the TPJ did not predict the subject's decisions.

The TPJ is in a boundary area of the brain, and may be an intersection for two streams of information, said lead researcher McKell Carter, a postdoctoral fellow at Duke. It brings together a flow of attentional information and biological information, such as "is that another person?"

Carter observed that in general, participants paid more attention to their opponent than their computer opponent while playing poker, which is consistent with humans' drive to be social.

Throughout the poker game experiment, regions of the brain that are typically thought to be social in nature did not carry information specific to a social context. "The fact that all of these that should be specifically social are used in other circumstances is a testament to the remarkable flexibility and efficiency of our brains," said Carter.

"There are fundamental neural differences between decisions in social and non-social situations," said D-CIDES Director Scott Huettel, the Hubbard professor of psychology & neuroscience at Duke and senior author of the study. "Social information may cause our brain to play by different rules than non-social information, and it will be important for both scientists and policymakers to understand what causes us to approach a decision in a social or a non-social manner.

"Understanding how the identifies important competitors and collaborators -- those people who are most relevant for our future behavior -- will lead to new insights into social phenomena like dehumanization and empathy," Huettel added.

The study, supported by National Institutes of Health, appears in the July 6 Science.

Explore further: It's not solitaire: Brain activity differs when one plays against others

More information: "A Distinct Role of the Temporal-parietal Junction in Predicting Socially Guided Decisions," R. McKell Carter, Daniel L. Bowling, Crystal Reeck, and Scott A. Huettel, Science, July 6, 2012. DOI 10.1126/science.1219681

Related Stories

How humans predict other's decisions

June 20, 2012

Researchers at the RIKEN Brain Science Institute (BSI) in Japan have uncovered two brain signals in the human prefrontal cortex involved in how humans predict the decisions of other people. Their results suggest that the ...

Recommended for you

New mechanism discovered behind infant epilepsy

September 3, 2015

Scientists at Karolinska Institutet and Karolinska University Hospital in Sweden have discovered a new explanation for severe early infant epilepsy. Mutations in the gene encoding the protein KCC2 can cause the disease, hereby ...

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.