Gene variant reduces cholesterol by two mechanisms

July 2, 2012

High levels of low-density lipoprotein (LDL) cholesterol increases the risk for coronary heart disease.

A variant in the encoding the protein sortilin is associated with reduced plasma LDL levels and a decreased risk of heart attack.

This variant results in markedly higher sortilin in liver.

Dr. Daniel Rader and colleagues at the University of Pennsylvania in Philadelphia have uncovered a two-pronged mechanism for the change in LDL observed.

Using a mouse model system, the Rader team found that increased liver sortilin is responsible for reducing secretion of APOB, a protein that transports LDL to tissue, and also triggers LDL breakdown.

Both of these effects were dependent on a cellular process known as lysosomal targeting.

Their data provide functional evidence that genetically-increased hepatic sortilin in humans reduces LDL by increasing LDL degradation, thus removing LDL from circulation, as well as decreasing APOB.

Explore further: New advance announced in reducing 'bad' cholesterol

More information: Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism, Journal of Clinical Investigation.

Related Stories

Recommended for you

Researchers make link between genetics, aging

February 3, 2016

Scientists at the University of Georgia have shown that a hormone instrumental in the aging process is under genetic control, introducing a new pathway by which genetics regulates aging and disease.

Study uncovers how electromagnetic fields can amplify pain

February 3, 2016

For years, retired Maj. David Underwood has noticed that whenever he drove under power lines and around other electromagnetic fields, he would feel a buzz in what remained of his arm. When traveling by car through Texas' ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.