Triangles guide the way for live neural circuits in a dish

July 19, 2012

Korean scientists have used tiny stars, squares and triangles as a toolkit to create live neural circuits in a dish.

They hope the shapes can be used to create a reproducible neural circuit model that could be used for learning and as well as drug screening applications; the shapes could also be integrated into the latest neural tissue scaffolds to aid the regeneration of neurons at injured sites in the body, such as the spinal cord.

Published today in the , the study, by researchers at the Korea Advanced Institute of Science and Technology (KAIST), found that triangles were the most effective shape for helping to facilitate the growth of axons and guide them onto specific paths to form a complete circuit.

Co-author of the study, Professor Yoonkey Nam, said: "Eventually, we want to know if we can design a model that biologically mimics some in our brain."

A neuron is an electrically excitable cell that processes and transmits information around the body. The neuron is composed of three main parts: a cell body, or soma, and an axon, which extends from the soma and links to other cells, creating a network.

When axons grow they are usually guided by proteins. Many researchers have been trying to re-create this key process in a dish by manipulating from rat brains.

As nerve cells are usually just a few tens of micrometres in size, the challenge associated with creating a live neural network is firstly positioning cells in desired locations and, secondly, making connections between these cells by guiding the axons in designated directions.

The researchers investigated whether two star shapes, five regular shapes (square, circle, triangle, pentagon and hexagon) and three different sizes of isosceles triangles could guide axons in designated directions. Each shape was the size of a single cell and was replicated to form an array which was printed onto a .

Each of the arrays had an overall size of 1cm-by-1cm with a gap of 10 micrometres between each shape. Hippocampal neurons were taken from rats and plated onto the patterned surfaces. The neurons were fluorescently labelled with dyes so that images could be taken of their growth.

The researchers found that triangles were the most efficient shape to encourage the growth and guidance of an axon. The key to this was the angles at the points where two of the triangle's lines meet, also known as the vertices. It was shown that the smaller the vertices, the higher chance the triangle had of inducing growth.

"Based on our results, we are suggesting a new design principle for guiding in a dish. We can control the axonal growth in a certain direction by putting a sharp triangle pointing to a certain direction. Then, a neuron that adhered to the triangle will have an axon in the sharp vertex direction.

"Overall, we integrated microtechnology with neurobiology to find a new engineering solution" continued Professor Nam.

Explore further: Connection discovered between the nervous system and the vascular system

More information: "Geometric effect of cell adhesive polygonal micropatterns on neuritogenesis and axon guidance" Jang M J and Nam Y 2012 J. Neural Eng. 9 046019

Related Stories

Recommended for you

Closer view of the brain

October 13, 2015

For Harvard neurobiologist Jeff Lichtman, the question hasn't been whether scientists will ever understand the brain, but how closely they'll have to look before they do.

Researchers build a digital piece of brain

October 8, 2015

If you want to learn how something works, one strategy is to take it apart and put it back together again. For 10 years, a global initiative called the Blue Brain Project—hosted at the Ecole Polytechnique Federale de Lausanne ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.