New insights into why humans are more susceptible to cancer and other diseases

August 23, 2012

Chimpanzees rarely get cancer, or a variety of other diseases that commonly arise in humans, but their genomic DNA sequence is nearly identical to ours. So, what's their secret? Researchers reporting in the September issue of the American Journal of Human Genetics, have found that differences in certain DNA modifications, called methylation, might play a role.

The researchers discovered hundreds of genes that display different patterns of methylation between the two species. These different patterns of methylation lead to different levels of expression, and many of the genes involved are linked to specific human diseases. Given that environmental factors can affect DNA methylation, these results might help researchers to better understand how differences in genetics and environmental exposure contribute to differences, including different disease vulnerabilities, between the two species.

DNA methylation doesn't change a cell's underlying , but it does affect and can have a profound impact on processes such as aging and the development of disease. By using new state-of-the-art techniques to look at methylation maps and gene expression in the brains of chimpanzees and humans, the investigators found that changes in DNA methylation at least partially explain the divergence of gene-expression patterns between these species.

In addition, differentially methylated genes showed striking links with specific neurological and and cancers to which modern humans are particularly susceptible, suggesting that changes in might be linked to the evolution of humans' vulnerability to certain diseases.

"Our results hint, but by no means provide proof, that epigenetic divergence—or changes of chemical properties of DNA—may be particularly important for some disease-related phenotypes that are pertinent to modern humans," says senior author Dr. Soojin Yi, from the Georgia Institute of Technology. "Such findings, in the long-term, may contribute to the development of better therapeutic targets for some human diseases," she adds.

Related Stories

Controlling patterns of DNA methylation

October 28, 2011

A study performed by scientists in Dirk Schübeler's team at the Friedrich Miescher Institute for Biomedical Research in Basel identifies DNA sequences that autonomously determine DNA methylation patterns. Genomic patterns ...

Epigenetics alters genes in rheumatoid arthritis

July 3, 2012

It's not just our DNA that makes us susceptible to disease and influences its impact and outcome. Scientists are beginning to realize more and more that important changes in genes that are unrelated to changes in the DNA ...

Recommended for you

Blocking a gene reduces fat

July 29, 2015

By blocking the expression of a certain gene in patients, University of Montreal researchers have contributed to the demonstration of great decreases in the concentration of triglycerides in their blood, even in various severe ...

Study identifies 'major player' in skin cancer genes

July 27, 2015

A multidisciplinary team at Yale, led by Yale Cancer Center members, has defined a subgroup of genetic mutations that are present in a significant number of melanoma skin cancer cases. Their findings shed light on an important ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.