New model of muscular dystrophy provides insight into disease development

August 27, 2012

Muscular dystrophy is a complicated set of genetic diseases in which genetic mutations affect the various proteins that contribute to a complex that is required for a structural bridge between muscle cells and the extracellular matrix (ECM) that provides the physical and chemical environment required for their development and function.

The affects of these in patients vary widely, even when the same gene is affected. In order to develop treatments for this disease, it is important to have an animal model that accurately reflects the course of the disease in humans.

In this issue of the , researchers at the University of Iowa report the development of a mouse model of Fukuyama's muscular dystrophy that copies the pathology seen in the human form of the disease.

By removing the gene fukutin from at various points during development, researchers led by Kevin Campbell were able to determine that fukutin disrupts important modifications of dystrophin that prevent the from attaching to the ECM. Disruption of the gene earlier in development led to a more severe form of the disease, suggesting that fukutin is important for muscle maturation. Disruptions in later stages of development caused a less severe form of the disease.

In a companion piece, Elizabeth McNally of the University of Chicago discusses the implications of this disease model for the development of new therapies to treat muscular dystrophy.

More information: Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy, Journal of Clinical Investigation, 2012.
The attachment disorders of muscle: failure to carb-load, Journal of Clinical Investigation, 2012.

Related Stories

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

A metabolic switch to turn off obesity

October 27, 2016

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.