New model of muscular dystrophy provides insight into disease development

Muscular dystrophy is a complicated set of genetic diseases in which genetic mutations affect the various proteins that contribute to a complex that is required for a structural bridge between muscle cells and the extracellular matrix (ECM) that provides the physical and chemical environment required for their development and function.

The affects of these in patients vary widely, even when the same gene is affected. In order to develop treatments for this disease, it is important to have an animal model that accurately reflects the course of the disease in humans.

In this issue of the , researchers at the University of Iowa report the development of a mouse model of Fukuyama's muscular dystrophy that copies the pathology seen in the human form of the disease.

By removing the gene fukutin from at various points during development, researchers led by Kevin Campbell were able to determine that fukutin disrupts important modifications of dystrophin that prevent the from attaching to the ECM. Disruption of the gene earlier in development led to a more severe form of the disease, suggesting that fukutin is important for muscle maturation. Disruptions in later stages of development caused a less severe form of the disease.

In a companion piece, Elizabeth McNally of the University of Chicago discusses the implications of this disease model for the development of new therapies to treat muscular dystrophy.

More information: Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy, Journal of Clinical Investigation, 2012.
The attachment disorders of muscle: failure to carb-load, Journal of Clinical Investigation, 2012.

add to favorites email to friend print save as pdf

Related Stories

Researchers develop mouse model for muscle disease

Sep 05, 2006

Researchers from the University of Minnesota have identified the importance of a gene critical to normal muscle function, resulting in a new mouse model for a poorly understood muscle disease in humans.

New gene linked to muscular dystrophy

Aug 10, 2009

Muscular dystrophy, a group of inherited diseases characterized by progressive skeletal muscle weakness, can be caused by mutations in any one of a number of genes. Another gene can now be added to this list, as Yukiko Hayashi ...

Researchers identify new form of muscular dystrophy

Mar 09, 2011

A strong international collaboration and a single patient with mild muscle disease and severe cognitive impairment have allowed University of Iowa researchers to identify a new gene mutation that causes muscular dystrophy.

Recommended for you

Growing a blood vessel in a week

11 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

14 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments