Genetic switch shuts down lung cancer tumors in mice

October 25, 2012

Yale researchers manipulated a tiny genetic switch and halted growth of aggressive lung cancer tumors in mice and even prevented tumors from forming.

The activation of a single managed to neutralize the effects of two of the most notorious genes in cancer's arsenal, suggesting it may have a role treating several forms of cancer, the researchers report in the Nov. 1 issue of the journal .

"This is pretty much the best pre-clinical data that show microRNAs can be effective in lung cancer treatment," said Frank Slack, professor of molecular, cellular & developmental biology, researcher for the Yale Cancer Center, and senior author of the paper. "These cancer genes are identical to ones found in many forms of human cancers and we are hopeful the microRNA will be of therapeutic benefit in human cancer."

Unlike drugs that act upon existing proteins, microRNAs are small pieces of genetic material that can shut down and turn off genes that produce the proteins. Slack and co-author Andrea Kasinski wanted to see if one of these microRNAs, miR-34, could block the actions of K-Ras and p53 genes, which promote proliferation and survival of cancer cells, respectively. Mice with these two mutant genes invariably develop tumors but were cancer-free when researchers activated miR-34. Also, tumor growth was halted in mice that were treated with miR-34 after they had developed cancer.

Explore further: In cancer, molecular signals that recruit blood vessels also trigger metastasis

Related Stories

Recommended for you

Researchers thwart cancer cells by triggering 'virus alert'

August 27, 2015

Working with human cancer cell lines and mice, researchers at the Johns Hopkins Kimmel Cancer Center and elsewhere have found a way to trigger a type of immune system "virus alert" that may one day boost cancer patients' ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.