Nanoparticles cut off 'addicted' tumors from source of their survival

May 28, 2012 By Bill Hathaway

(Medical Xpress) -- Yale biologists and engineers have designed drug-loaded nanoparticles that target the soft underbelly of many types of cancer — a tiny gene product that tumors depend upon to replicate and survive.

The novel therapy successfully stopped lymphoma in mice when injected directly into tumors, the researchers report in the Proceedings of the National Academy of Sciences, published the week of May 28.

The interdisciplinary collaboration takes advantage of a new concept in cancer research — that tumors become “addicted” to a few genetic abnormalities they need to survive, grow, and spread throughout the body.

“Thousands of genes are mis-expressed in cancer, but so far cancer researchers have only found 10 or so that cancer cells absolutely need to survive,” said Frank Slack, professor of molecular, cellular, and developmental biology, director of the Cancer Genetics and Genomics Program for the Yale Cancer Center, and senior author of the study.

Slack’s lab studies microRNAs, or small pieces of genetic material that determine when and where much larger genes that code for proteins are used. One of these miRNAs, miR-155, helps regulate cell survival and is overactive in many forms of cancer. For instance, mice with excessive amounts of miR-155 develop lymphoma tumors.

One of Slack’s graduate students collaborated with a student working in the lab of Mark Saltzman, the Goizueta Foundation Professor of Chemical and Biomedical Engineering and Yale Cancer Center researcher, about ways to use nanoparticles to help block actions of miR-155 in mice with lymphoma. The team discovered that injecting nanoparticles that deliver a compound that specifically targets miR-155 into tumors stopped them from growing in mice.

Slack pointed out that miR-155 is also overactive in lung and many other treatment-resistant forms of the disease.

“At this point, we want to improve the technique so we can load even more of this compound into the nanoparticles and make it easier for them to enter cells,” Slack said. “Ultimately, we would like to take this to human clinical trials for difficult-to-treat cancers.”

Imran A. Babar and Christopher J. Cheng were co-lead authors of the paper. Other Yale authors are Carmen J. Booth, Xianping Liang, and Joanne B. Weidhaas.

Explore further: In cancer, molecular signals that recruit blood vessels also trigger metastasis

Related Stories

In cancer, molecular signals that recruit blood vessels also trigger metastasis

December 19, 2011
(Medical Xpress) -- Cancer cells are most deadly when they’re on the move — able not only to destroy whatever organ they are first formed in, but also to create colonies elsewhere in the body. New research has now ...

Recommended for you

Vitamin C may encourage blood cancer stem cells to die

August 17, 2017
Vitamin C may "tell" faulty stem cells in the bone marrow to mature and die normally, instead of multiplying to cause blood cancers. This is the finding of a study led by researchers from Perlmutter Cancer Center at NYU Langone ...

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.