Nanoparticles cut off 'addicted' tumors from source of their survival

May 28, 2012 By Bill Hathaway, Yale University

(Medical Xpress) -- Yale biologists and engineers have designed drug-loaded nanoparticles that target the soft underbelly of many types of cancer — a tiny gene product that tumors depend upon to replicate and survive.

The novel therapy successfully stopped lymphoma in mice when injected directly into tumors, the researchers report in the Proceedings of the National Academy of Sciences, published the week of May 28.

The interdisciplinary collaboration takes advantage of a new concept in cancer research — that tumors become “addicted” to a few genetic abnormalities they need to survive, grow, and spread throughout the body.

“Thousands of genes are mis-expressed in cancer, but so far cancer researchers have only found 10 or so that cancer cells absolutely need to survive,” said Frank Slack, professor of molecular, cellular, and developmental biology, director of the Cancer Genetics and Genomics Program for the Yale Cancer Center, and senior author of the study.

Slack’s lab studies microRNAs, or small pieces of genetic material that determine when and where much larger genes that code for proteins are used. One of these miRNAs, miR-155, helps regulate cell survival and is overactive in many forms of cancer. For instance, mice with excessive amounts of miR-155 develop lymphoma tumors.

One of Slack’s graduate students collaborated with a student working in the lab of Mark Saltzman, the Goizueta Foundation Professor of Chemical and Biomedical Engineering and Yale Cancer Center researcher, about ways to use nanoparticles to help block actions of miR-155 in mice with lymphoma. The team discovered that injecting nanoparticles that deliver a compound that specifically targets miR-155 into tumors stopped them from growing in mice.

Slack pointed out that miR-155 is also overactive in lung and many other treatment-resistant forms of the disease.

“At this point, we want to improve the technique so we can load even more of this compound into the nanoparticles and make it easier for them to enter cells,” Slack said. “Ultimately, we would like to take this to human clinical trials for difficult-to-treat cancers.”

Imran A. Babar and Christopher J. Cheng were co-lead authors of the paper. Other Yale authors are Carmen J. Booth, Xianping Liang, and Joanne B. Weidhaas.

Explore further: In cancer, molecular signals that recruit blood vessels also trigger metastasis

Related Stories

In cancer, molecular signals that recruit blood vessels also trigger metastasis

December 19, 2011
(Medical Xpress) -- Cancer cells are most deadly when they’re on the move — able not only to destroy whatever organ they are first formed in, but also to create colonies elsewhere in the body. New research has now ...

Recommended for you

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

Presurgical targeted therapy delays relapse of high-risk stage 3 melanoma

January 17, 2018
A pair of targeted therapies given before and after surgery for melanoma produced at least a six-fold increase in time to progression compared to standard-of-care surgery for patients with stage 3 disease, researchers at ...

Dulling cancer therapy's double-edged sword

January 17, 2018
Researchers have discovered that killing cancer cells can actually have the unintended effect of fueling the proliferation of residual, living cancer cells, ultimately leading to aggressive tumor progression.

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.