Scientists provide detailed view of brain protein structure: Results may help improve drugs for neurological disorders

Researchers have published the first highly detailed description of how neurotensin, a neuropeptide hormone which modulates nerve cell activity in the brain, interacts with its receptor. Their results suggest that neuropeptide hormones use a novel binding mechanism to activate a class of receptors called G-protein coupled receptors (GPCRs).

"The knowledge of how the peptide binds to its receptor should help scientists design better drugs," said Dr. Reinhard Grisshammer, a scientist at the NIH's National Institute of Neurological Disorders and Stroke (NINDS) and an author of the study published in Nature.

Binding of neurotensin initiates a series of reactions in . Previous studies have shown that neurotensin may be involved in Parkinson's disease, schizophrenia, , pain, and .

Dr. Grisshammer and his colleagues used X-ray crystallography to show what the receptor looks like in atomic detail when it is bound to neurotensin. Their results provide the most direct and detailed views describing this interaction which may change the way scientists develop drugs targeting similar neuropeptide receptors.

X-ray crystallography is a technique in which scientists shoot X-rays at crystallized molecules to determine a molecule's shape and structure. The X-rays change directions, or diffract, as they pass through the crystals before hitting a detector where they form a pattern that is used to calculate the of the molecule. These structures guide the way scientists think about how proteins work.

Neurotensin receptors and other GPCRs belong to a large class of which are activated by a variety of molecules, called ligands. Previous X-ray crystallography studies showed that smaller ligands, such as adrenaline and retinal, bind in the middle of their respective GPCRs and well below the receptor's surface. In contrast, Dr. Grisshammer's group found that neurotensin binds to the outer part of its receptor, just at the receptor surface. These results suggest that neuropeptides activate GPCRs in a different way compared to the smaller .

Forming well-diffracting neuropeptide-bound GPCR crystals is very difficult. Dr. Grisshammer and his colleagues spent many years obtaining the results on the neurotensin receptor. During that time Dr. Grisshammer started collaborating with a group led by Dr. Christopher Tate, Ph.D. at the MRC Laboratory of Molecular Biology, Cambridge, England. Dr. Tate's lab used recombinant gene technology to create a stable version of the neurotensin receptor which tightly binds neurotensin. Meanwhile Dr. Grisshammer's lab employed the latest methods to crystallize the receptor bound to a short version of neurotensin.

The results published today are the first X-ray crystallography studies showing how a neuropeptide agonist binds to neuropeptide GPCRs. Nonetheless, more work is needed to fully understand the detailed signaling mechanism of this GPCR, said Dr. Grisshammer.

More information: White et al., "Structure of the agonist-bound neurotensin receptor." Nature, published online October 10, 2012. DOI: 10.1038/nature11558

Related Stories

New clues for asthma treatment

Mar 18, 2011

(PhysOrg.com) -- New information that could help in the fight against asthma has been obtained by an international collaboration of scientists utilizing the U.S. Department of Energy’s Advanced Photon ...

Recommended for you

Student seeks to improve pneumonia vaccines

16 hours ago

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

18 hours ago

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

User comments