Research discovers two opposite ways our brain voluntarily forgets unwanted memories

If only there were a way to forget that humiliating faux pas at last night's dinner party. It turns out there's not one, but two opposite ways in which the brain allows us to voluntarily forget unwanted memories, according to a study published by Cell Press October 17 in the journal Neuron. The findings may explain how individuals can cope with undesirable experiences and could lead to the development of treatments to improve disorders of memory control. Credit: Current Biology, Benoit et al.

If only there were a way to forget that humiliating faux pas at last night's dinner party. It turns out there's not one, but two opposite ways in which the brain allows us to voluntarily forget unwanted memories, according to a study published by Cell Press October 17 in the journal Neuron. The findings may explain how individuals can cope with undesirable experiences and could lead to the development of treatments to improve disorders of memory control.

"This study is the first demonstration of two distinct mechanisms that cause such forgetting: one by shutting down the remembering system, and the other by facilitating the remembering system to occupy awareness with a substitute memory," says lead study author Roland Benoit of the MRC Cognition and Brain Sciences Unit at the University of Cambridge.

Previous studies have shown that individuals can voluntarily block memories from awareness. Although several neuroimaging studies have examined the involved in intentional forgetting, they have not revealed the cognitive tactics that people use or the precise . Two possible ways to forget unwanted memories are to suppress them or to substitute them with more desirable memories, and these tactics could engage distinct .

To test this possibility, Benoit and Michael Anderson of the MRC Cognition and Brain Sciences Unit used to examine the brain activity of volunteers who had learned associations between pairs of words and subsequently attempted to forget these memories by either blocking them out or recalling substitute memories.

Although the strategies were equally effective, they activated distinct . During memory suppression, a called dorsolateral prefrontal cortex inhibited activity in the hippocampus, a region critical for recalling past events. On the other hand, memory substitution was supported by caudal prefrontal cortex and midventrolateral prefrontal cortex—two regions involved in bringing specific memories into awareness in the presence of distracting memories.

"A better understanding of these mechanisms and how they break down may ultimately help understanding disorders that are characterized by a deficient regulation of memories, such as posttraumatic stress disorder," Benoit says. "Knowing that distinct processes contribute to forgetting may be helpful, because people may naturally be better at one approach or the other."

More information: Benoit et al.: "Opposing mechanisms support the voluntary forgetting of unwanted memories." Neuron, 2012.

Related Stories

New research shows that we control our forgetfulness

Jul 05, 2011

Have you heard the saying "You only remember what you want to remember"? Now there is evidence that it may well be correct. New research from Lund University in Sweden shows that we can train ourselves to forget things.

Brain's memory storing is studied

Mar 01, 2006

University of California-Irvine scientists have identified the neural activity that occurs when the brain "sets the stage" for retaining a memory.

Remembering to forget

Jun 22, 2012

(Medical Xpress) -- New research suggests that it is possible to suppress emotional autobiographical memories.  The study published this month by psychologists at the University of St Andrews reveals that individuals ...

How we remember each other

Apr 03, 2007

Researchers at McGill University’s Douglas Mental Health University Institute, in collaboration with a French team at the University of Paris, have used magnetic resonance imaging (MRI) to identify the part of the brain ...

Recommended for you

'Chatty' cells help build the brain

15 hours ago

The cerebral cortex, which controls higher processes such as perception, thought and cognition, is the most complex structure in the mammalian central nervous system. Although much is known about the intricate ...

'Trigger' for stress processes discovered in the brain

Nov 27, 2014

At the Center for Brain Research at the MedUni Vienna an important factor for stress has been identified in collaboration with the Karolinska Institutet in Stockholm (Sweden). This is the protein secretagogin ...

New research supporting stroke rehabilitation

Nov 26, 2014

Using world-leading research methods, the team of Dr David Wright and Prof Paul Holmes, working with Dr Jacqueline Williams from the Victoria University in Melbourne, studied activity in an area of the brain ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Tausch
not rated yet Oct 17, 2012
Hyperthymestic syndrome. The Antagonist.
A picture is worth a thousand words. Perhaps.
A word is worth a thousand associations. More likely.
Why stop there?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.