Study shows antidepressant could do double duty as diabetes drug

December 14, 2012

University of Texas Medical Branch at Galveston researchers have discovered that the commonly used antidepressant drug paroxetine could also become a therapy for the vascular complications of diabetes.

The scientists made their discovery after screening 6,766 clinically used drugs and pharmacologically active substances.

"We developed this assay and used it to test literally every single existing drug and a good selection of other biologically active compounds," said UTMB professor Csaba Szabo, senior author of a paper on the research published online by Diabetes. "We were quite surprised when came out as an active compound —a result, we later determined, of what seems to be a completely new effect unrelated to its antidepressant actions and not shared by any other known antidepressant drug."

The initial screening process tested the ability of different compounds to protect the cells that make up the inner linings of blood vessels from the of the high sugar levels produced by diabetes, known as hyperglycemia. In people with diabetes, hyperglycemia causes these endothelial cells to generate known as reactive oxygen species (ROS), which ravage blood-vessel linings and lead to diabetic , the key factor in such destructive as heart attacks, strokes, retinopathy, nephropathy and neuropathy.

In subsequent test-tube studies, researchers found that paroxetine—which is sold as an antidepressant under the trade name "Paxil"—prevents hyperglycemia-initiated ROS damage to endothelial cells in two ways. First, it directly reduces concentrations of superoxide, a powerful ROS. Second, it suppresses superoxide production by mitochondria, whose real job is making the energy-transfer molecules needed for most . In a hyperglycemic environment, mitochondria are cells' biggest source of superoxide. According to the researchers' findings, paroxetine inhibits this activity without interfering with the mitochondria's vital normal function.

Further experiments yielded still more evidence that paroxetine protects under hyperglycemic conditions. Reactive cause significant damage to DNA, RNA and proteins, but cell-culture experiments showed that paroxetine significantly reduced this effect. The drug had similarly beneficial results when tested on rat "aortic rings"—small pieces of blood vessel kept alive with tissue-culture techniques. When treated with the vasodilator acetylcholine, these rings dilated just as if they were still part of a functioning circulatory system; endothelial dysfunction caused by diabetic hyperglycemia normally interferes with this function, but paroxetine restored it.

Finally, the researchers tested paroxetine in rats that had been injected with streptozotocin, a chemical that induces diabetes. The animals given paroxetine developed hypoglycemia, but like the aortic rings, their arteries retained the ability to dilate—an indication that the drug had prevented damage to their epitheliums.

"The future potential of this study is that we may be able to 're-purpose' paroxetine for the experimental therapy of diabetic cardiac complications," Szabo said. "We'll need to carefully characterize its safety profile in diabetic patients, but I think there's definite potential here."

Explore further: Media publicity best for drug warnings

Related Stories

Media publicity best for drug warnings

February 13, 2006

A Bristol University study shows media coverage concerning a drug's adverse reactions is much more effective than official regulatory announcements.

Bone marrow cells can heal nerves in diabetes model

February 4, 2009

Transplanting cells that replenish blood vessels can also restore nerve function in an animal model of diabetic neuropathy, Emory researchers have found. The results are described online this week in the journal Circulation.

Recommended for you

Diets avoiding dry-cooked foods can protect against diabetes

August 24, 2016

Simple changes in how we cook could go a long way towards preventing diabetes, say researchers at the Icahn School of Medicine at Mount Sinai. A new randomized controlled trial, published online July 29 in the journal Diabetologia, ...

New study reveals a novel protein linked to type 2 diabetes

August 16, 2016

Findings from Boston University School of Medicine (BUSM), which appear in eLife, provide a possible explanation as to why most people who are obese develop insulin resistance and type 2 diabetes. A minority of obese individuals, ...

Bacteria may cause type 2 diabetes

June 1, 2015

Bacteria and viruses have an obvious role in causing infectious diseases, but microbes have also been identified as the surprising cause of other illnesses, including cervical cancer (Human papilloma virus) and stomach ulcers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.