Novel studies of gene regulation in brain development may mean new treatment of mental disorders

(Phys.org)—A team of researchers at the University of California, San Diego and the Institut Pasteur, Paris has come up with a novel way to describe a time-dependent brain development based on coherent–gene-groups (CGGs) and transcription-factors (TFs) hierarchy. The findings could lead to new drug designs for mental disorders such as autism-spectrum disorders (ASD) and schizophrenia.

In the paper, published November 22 as an online-first publication in the journal Genes, Brain and Behavior, the researchers identified the hierarchical tree of CGG–TF networks that determine the patterns of genes expressed during brain development and found that some "master " at the top level of the hierarchy regulated the expression of a significant number of gene groups.

Instead of a taking the approach that a single gene creates a single response, researchers used contemporary methods of data analysis, along with the Gordon supercomputer at the university's (SDSC), to identify CGGs responsible for brain development which can be affected for treatment of mental disorders. The team found that these groups of genes act in concert to send signals at various levels of the hierarchy to other groups of genes, which control the general and more specific (depending of the level) events in development.

"We have proposed a novel, though still hypothetical, strategy of drug design based on this hierarchical network of TFs that could pave the way for a new category of pharmacological agents that could be used to block a pathway at a critical time during brain development as an effective way to treat and even prevent mental disorders such as and schizophrenia," said lead author Igor Tsigelny, a research scientist with SDSC, as well as the university's Moores and Department of Neurosciences. "On a broader scale, these findings have the potential to change the paradigm of drug design."

Using samples taken from three different regions of the brains of rats, the researchers used Gordon and SDSC's BiologicalNetworks server to conduct numerous levels of analysis, starting with processing of microarray data and SOM (self-organizing maps) clustering, before determining which gene zones were associated with significant developmental changes and brain disorders.

Researchers then conducted analyses of stages of development and quick comparisons between rat and human , in addition to pathway analyses and functional and hierarchical network analyses. The team then analyzed specific gene–TF interactions, with a focus on neurological disorders, before investigating further directions for drug design based on analysis of the hierarchical networks.

More information: A Hierarchical Coherent-Gene-Group Model for Brain Development, Genes, Brain and Behavior, 2012.

Related Stories

Scientists identify age-associated defects in schizophrenia

Mar 01, 2010

The underlying causes of the debilitating psychiatric disorder schizophrenia remain poorly understood. In a new study published online in Genome Research March 2, 2010, however, scientists report that a powerful gene networ ...

Recommended for you

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.