Targeted gene silencing drugs are more than 500 times more effective with new delivery method

December 21, 2012
©2012, Mary Ann Liebert, Inc., publishers

Small interfering RNAs (siRNAs) are a potent new drug class that can silence a disease-causing gene, but delivering them to a target cell can be challenging. An innovative delivery approach that dramatically increases the efficacy of an siRNA drug targeted to the liver and has made it possible to test the drug in non-human primates is described in an article in Nucleic Acid Therapeutics.

In the article "Co-Injection of a Targeted, Reversibly Masked Endosomolytic Polymer Dramatically Improves the Efficacy of Cholesterol-Conjugated In Vivo" (http://online.liebertpub.com/doi/full/10.1089/nat.2012.0389) Wong and colleagues from Arrowhead Madison Inc. (Madison, WI) present a novel strategy to overcome the difficulty in delivering high levels of a gene knockdown siRNA drug to liver cells. While the cholesterol-conjugated siRNA drug is taken up preferentially by the liver, it is encapsulated in membrane-bound globules called endosomes and cannot reach the cells' DNA to exert its gene silencing effect. The researchers co-injected a polymer with the drug that also targets the liver and, once inside , breaks open the , releasing the siRNA drug.

"The promise of siRNAs is as strong as ever and is becoming even more so with progress in delivering these molecules to the right place at the right time," says Executive Editor Fintan Steele, PhD, SomaLogic, Inc., Boulder, CO. "The work by Wong and colleagues is another important step towards realizing this promise."

Related Stories

Recommended for you

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

Anti-aging tricks from dietary supplement seen in mice

August 21, 2015

In human cells, shortened telomeres, the protective caps at the ends of chromosomes, are both a sign of aging and contribute to it. Scientists at Emory University School of Medicine have found that the dietary supplement ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.