Research may have important implications for combating diabetes

by William G. Gilroy

(Medical Xpress)—Research by University of Notre Dame biochemist Anthony S. Serianni is providing new insights that could have important implications for understanding and treating diabetes.

Serianni points out that known as dicarbonyl sugars are produced inside the human body from the natural breakdown of the simple . The formation of these sugars is enhanced in diabetic patients because in the blood and plasma of diabetics are significantly elevated.

"We investigated, under laboratory conditions that approximate those in the body, the degradation of a specific dicarbonyl sugar called glucosone," Serianni says. "To establish with certainty the chemical fates of the individual carbons of the glucosone molecule during degradation, we replaced some of its carbons with a rare form of carbon (denoted 13C) and applied an analytical technique known as nuclear to observe at the molecular level how the individual 13C carbons behave as degradation occurred.

"We learned that glucosone degrades by an unanticipated that involves a novel rearrangement of the carbon backbone of the molecule, a process we call C1-C2 transposition."

The discovery undermines some prevailing assumptions about how sugars generally undergo degradation.

"Since sugar degradation in the body has important physiological implications—for example, by causing changes in that accompany aging and by producing highly reactive byproducts that damage cellular constituents—understanding how these molecules are transformed in the body is essential to understanding spontaneous that are not necessarily subject to typical cellular controls," Serianni says.

The research also demonstrates a new role for phosphate as a catalyst in sugar degradation, a role that may be more common in in vitro and in vivo biochemistry than currently appreciated.

The research is a culmination of prior studies that Serianni's research group has conducted on saccharide degradation and rearrangement. In 1982, his group discovered the first stereospecific C1-C2 transposition reaction of saccharides, catalyzed by molybdate ion, that resulted in a process called C2 epimerization. This work led to new and convenient synthetic pathways for the 13C-labeling of saccharides upon which a commercial business was founded.

Serianni's lab has also promoted the use of 13C and other isotopes as tools to investigate new chemical and biochemical reactions, to probe biological metabolism and to develop new clinical and diagnostic tools and tests.

"In this sense, the glucosone work fits nicely into our overall research mission," Serianni says.

The glucosone research was described in a study that appeared in the Journal of the American Chemical Society and was supported by the National Institute of Diabetes and Digestive and Kidney Disease.

Related Stories

Renewable Raw Materials

May 29, 2006

Petroleum and natural gas reserves are getting smaller and smaller. It is thus a real waste to burn up these valuable resources for heat or transportation especially as "black gold" is also the most important starting material ...

Recommended for you

Blood glucose levels set for achieving HbA1c targets

Apr 11, 2014

(HealthDay)—The average self-monitored blood glucose (SMBG) concentrations needed at premeal, postmeal, and bedtime have been established to achieve a range of hemoglobin A1c (HbA1c) targets, according ...

Women with diabetes less likely to have a mammogram

Apr 11, 2014

Women with diabetes are 14 per cent less likely to be screened for breast cancer compared to women without diabetes, according to a study by researchers at the Institute for Clinical Evaluative Sciences (ICES) and Women's ...

Nonalcoholic fatty liver disease linked to CKD in T1DM

Apr 09, 2014

(HealthDay)—For patients with type 1 diabetes, nonalcoholic fatty liver disease (NAFLD) is independently associated with the risk of incident chronic kidney disease (CKD), according to a study published ...

Common diabetes treatment could extend hypoglycaemia

Apr 08, 2014

(Medical Xpress)—Researchers at the University of Adelaide have discovered that a common treatment for people with type 2 diabetes could cause longer-than-normal periods of the low blood sugar reaction hypoglycaemia, which ...

User comments