Lethal stings from the Australian box jellyfish could be treated with zinc

December 12, 2012
This shows an Australian box jellyfish. Yanagihara AA, Shohet RV (2012) Cubozoan Venom-Induced Cardiovascular Collapse Is Caused by Hyperkalemia and Prevented by Zinc Gluconate in Mice. PLoS ONE 7(12): e51368. doi:10.1371/journal.pone.0051368

Box jellyfish of the Chironex species are among the most venomous animals in the world, capable of killing humans with their sting. Their venom, though, which kills by rapidly punching holes in human red blood cells, can be slowed down by administering zinc, according to research published December 12 in the open access journal PLOS ONE by Angel Yanagihara from the University of Hawaii and colleagues.

The researchers developed ways to extract venom from the jellyfish, and tested it on human blood and on mice. They found that the venom created pores in human , making them leak large amounts of potassium, which causes cardiac arrest and death.

As Yanagihara elaborates, "For over 60 years researchers have sought to understand the horrifying speed and potency of the venom of the Australian , arguably the most venomous animal in the world. We have found that a previously disregarded hemolysin can cause an avalanche of reactions in cells. This includes an almost instantaneous, massive release of potassium that can cause acute cardiovascular collapse and death."

The authors treated the cells with a zinc compound which inhibits this process, and found that the treatment could slow the pore-forming process in cells, and increased survival times in the mice treated with the compound, zinc gluconate. The research suggests that the venom's capacity to increase potassium levels is what makes it so dangerous, and that rapid administration of zinc may be a potential life-saver in human sting victims.

Explore further: Scientists Unravel Evolution of Highly Toxic Box Jellyfish

More information: Yanagihara AA, Shohet RV (2012) Cubozoan Venom-Induced Cardiovascular Collapse Is Caused by Hyperkalemia and Prevented by Zinc Gluconate in Mice. PLoS ONE 7(12): e51368. doi:10.1371/journal.pone.0051368

Related Stories

Scientists Unravel Evolution of Highly Toxic Box Jellyfish

November 18, 2009

(PhysOrg.com) -- With thousands of stinging cells that can emit deadly venom from tentacles that can reach ten feet in length, the 50 or so species of box jellyfish have long been of interest to scientists and to the public. ...

Cone of poison: The secret behind the cone snail's venom pump

October 27, 2010

Scientists have discovered the secret of how an amazing sea snail injects its venom after shooting a harpoon-like tooth into its prey -- or some unlucky swimmer -- at jetliner speeds. The creatures, called cone snails, use ...

Venom tears: Snake bites can turn out to be groovy

May 13, 2011

Many people worry about the manner of their death. Death by car accident, death by cancer and death by gunshot are some of the more dreaded ways to go. No less awful is the prospect of death by snakebite. So a new research ...

Sea anemones venom key to Multiple Sclerosis treatment

July 23, 2012

(Medical Xpress) -- Sea anemones use venomous stinging tentacles to stun their prey, but one component of that venom is being used by researchers to treat the debilitating effects of Multiple Sclerosis (MS).

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.