It's not just amyloid: White matter hyperintensities and Alzheimer's disease

(Medical Xpress)—New findings by Columbia researchers suggest that along with amyloid deposits, white matter hyperintensities (WMHs) may be a second necessary factor for the development of Alzheimer's disease.

Most current approaches to Alzheimer's disease focus on the accumulation of amyloid plaque in the brain. The researchers at the Taub Institute for Research on Alzheimer's Disease and the , led by Adam M. Brickman, PhD, assistant professor of neuropsychology, examined the additional contribution of small-vessel cerebrovascular disease, which they visualized as white matter hyperintensities (WMHs).

The study included 20 subjects with clinically defined Alzheimer's disease, 59 subjects with , and 21 normal control subjects. Using data from the Alzheimer's Disease Neuroimaging Initiative public database, the researchers found that amyloid and WHMs were equally associated with an Alzheimer's diagnosis. Amyloid and WMHs were also equally predictive of which subjects with mildcognitive impairment would go on to develop Alzheimer's. Among those with significant amyloid, WMHs were more prevalent in those with Alzheimer's than in normal control subjects.

Because the risk factors for WMHs—which are mainly vascular—can be controlled, the findings suggest potential ways to prevent the development of Alzheimer's in those with .

" and Cerebral Amyloidosis" was published online today in JAMA Neurology.

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Comprehensive report on dementia guides social care

21 hours ago

The most comprehensive report yet into dementia care in the North East has been published by the Northern Rock Foundation, with help from Newcastle University academics. The report Dementia 2014: a North East Perspective coinc ...

Researchers identify potential biomarker for AD

Jul 28, 2014

Researchers from Boston University School of Medicine (BUSM) report variants in a new gene, PLXNA4, which may increase the risk of developing Alzheimer's disease (AD). The discovery of this novel genetic association may lead ...

User comments