Study identifies chemical changes in brains of people at risk for Alzheimer's disease

August 24, 2011

A brain imaging scan identifies biochemical changes in the brains of normal people who might be at risk for Alzheimer's disease, according to research published in the August 24, 2011, online issue of Neurology, the medical journal of the American Academy of Neurology.

The study of 311 people in their 70s and 80s with no , from the population-based Mayo Clinic Study of Aging, used an advanced imaging technique called proton MR spectroscopy to see if they had abnormalities in several brain metabolites that may be biomarkers for Alzheimer's disease. They also had to assess the level of amyloid-beta deposits, or plaques, in the brain that are one of the first signs of changes in the brain due to Alzheimer's disease. The participants were also given tests of memory, language and other skills.

"There is increasing evidence that Alzheimer disease is associated with changes in the brain that start many years before symptoms develop," said Jonathan M. Schott, MD, of the Research Centre, University College London in England and a member of the American Academy of Neurology, who wrote an editorial accompanying the study. "If we could identify people in whom the disease process has started but symptoms have not yet developed, we would have a potential window of opportunity for new treatments—as and when they become available—to prevent or delay the start of memory loss and cognitive decline."

The study found that 33 percent of the participants had significantly high levels of amyloid-beta deposits in their brains. Those with high levels of amyloid-beta deposits also tended to have high levels of the brain metabolites myoinositol/creatine and choline/creatine. People with high levels of choline/creatine were more likely to have lower scores on several of the cognitive tests, regardless of the amount of amyloid-beta deposits in their brains.

"This relationship between amyloid-beta deposits and these metabolic changes in the brain are evidence that some of these people may be in the earliest stages of the disease," said study author Kejal Kantarci, MD, MSc, of the Mayo Clinic in Rochester, Minn., and a member of the American Academy of Neurology. "More research is needed that follows people over a period of years to determine which of these individuals will actually develop the disease and what the relationship is between the amyloid deposits and the ." At the present time, MR spectroscopy cannot be used for diagnosis.

Related Stories

Recommended for you

Study reveals breakthrough in decoding brain function

September 25, 2017
If there's a final frontier in understanding the human body, it's definitely not the pinky. It's the brain.

After 15 years in a vegetative state, nerve stimulation restores consciousness

September 25, 2017
A 35-year-old man who had been in a vegetative state for 15 years after a car accident has shown signs of consciousness after neurosurgeons implanted a vagus nerve stimulator into his chest. The findings reported in Current ...

Overturning widely held ideas: Visual attention drawn to meaning, not what stands out

September 25, 2017
Our visual attention is drawn to parts of a scene that have meaning, rather than to those that are salient or "stick out," according to new research from the Center for Mind and Brain at the University of California, Davis. ...

A brain system that builds confidence in what we see, hear and touch

September 25, 2017
A series of experiments at EPFL provide conclusive evidence that the brain uses a single mechanism (supramodality) to estimate confidence in different senses such as audition, touch, or vision. The study is published in the ...

Brain guides body much sooner than previously believed

September 25, 2017
The brain plays an active and essential role much earlier than previously thought, according to new research from Tufts University scientists which shows that long before movement or other behaviors occur, the brain of an ...

The rat race is over: New livestock model for stroke could speed discovery

September 25, 2017
It is well-known in the medical field that the pig brain shares certain physiological and anatomical similarities with the human brain. So similar are the two that researchers at the University of Georgia's Regenerative Bioscience ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.