Fluctuations in size of brain waves contribute to information processing

February 8, 2013
The researchers used electrode arrays to record brain waves from the rat hippocampus while the animals performed various behaviors, such as running through a maze. © 2012 iStockPhoto/Thinkstock

Cyclical variations in the size of brain wave rhythms may participate in the encoding of information by the brain, according to a new study led by Colin Molter of the Neuroinformatics Japan Center, RIKEN Brain Science Institute.

are produced by the synchronized activity of large populations of neurons. Low frequency brain waves called theta oscillations are known to support . Researchers typically examine the frequency of oscillations in a given part of the brain and the timing of oscillations in different , but know very little about how variations in the size of these oscillations contribute to information processing.

Molter and his colleagues used electrode arrays to record brain waves from the rat hippocampus, a structure known to be critical for memory formation and , while the animals performed various behaviors, such as exploring open spaces, running through a maze and in a wheel, and sleeping. They observed fluctuations in the size of theta oscillations during all the behaviors—the brain waves did not remain the same size, but rather waxed and waned second by second.

During spatial navigation for example, individual hippocampal neurons called become more active when the animal is in one or a few specific locations compared to the rest of the explored environment. The researchers found that the time of firing of many of the place cells correlated with the fluctuations in the size of the . During sleep, the activity of most of the cells was timed with the largest theta oscillations.

Even though the size of theta waves is correlated with , their cyclic fluctuations at this time scale, observed while the rats ran and explored, were not correlated with the animals' speed or acceleration. The fluctuations are instead likely to be generated by the brain itself, as their presence during sleep also suggests they are intrinsic.

The researchers speculate that this phenomenon could be helpful for the neuronal representation of space, resolving the ambiguity of space coding by place cells that become active in multiple preferred locations. "We are currently working on several new experiments to understand how the spatial location may affect the slow modulation and how the timing of the slow modulation affects behavior," says Molter. "We are also trying to provide a model that incorporates the theta slow modulation to help propagation of activity between cell assemblies."

Explore further: Researchers probe link between theta rhythm, ability of animals to track location

More information: Molter, C., O'Neill, J., Yamaguchi, Y., Hirase, H. & Leinekugel, X. Rhythmic modulation of theta oscillations supports encoding of spatial and behavioral information in the rat hippocampus. Neuron 75, 889–903 (2012). www.cell.com/neuron/abstract/S0896-6273%2812%2900622-8

Related Stories

Brain state affects memory recall

June 13, 2011

Lost your keys? Your brain might be in a better state to recall where you put them at some times than at others, according to new research from UC Davis. A paper describing the work is published June 13 in the journal Proceedings ...

Learning requires rhythmical activity of neurons

September 26, 2012

The hippocampus represents an important brain structure for learning. Scientists at the Max Planck Institute of Psychiatry in Munich discovered how it filters electrical neuronal signals through an input and output control, ...

Recommended for you

Fish courtship pheromone uses the brain's smell pathway

May 30, 2016

Research at the RIKEN Brain Science Institute in Japan has revealed that a molecule involved in fish reproduction activates the brain via the nose. The pheromone is released by female zebrafish and sensed by smell receptors ...

Neuroscientists illuminate role of autism-linked gene

May 25, 2016

A new study from MIT neuroscientists reveals that a gene mutation associated with autism plays a critical role in the formation and maturation of synapses—the connections that allow neurons to communicate with each other.

Teen brains facilitate recovery from traumatic memories

May 25, 2016

Unique connections in the adolescent brain make it possible to easily diminish fear memories and avoid anxiety later in life, according to a new study by Weill Cornell Medicine researchers. The findings may have important ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.