Impact of stem cell transplantation location in brain a crucial factor for cell survival

February 13, 2013

Researchers at the Johns Hopkins University in Baltimore, Md., and the Mossakowski Medical Research Centre in Warsaw, Poland, have found that nonself-donated cells (allografts) better survive implantation into the brains of immunocompetent research mice when the grafts are injected into the striatum (STR) of the brain rather than injected into the forceps minor (FM) region. In their study, all FM grafts were rejected while STR grafts accumulated and survived along the border between the striatum and the corpus callosum.

"To the best of our knowledge, this is the first demonstration that allograft survival within the of an immunocompetent, non-immune suppressed host may be highly dependent on implantation site," said study co-author Dr. Pior Walczak of the Johns Hopkins University School of Medicine.

The study appears as an early e-publication for the journal .

The researchers, who assessed the grafted cells using for 16 days, reported that the distribution of the FM grafts was cylindrical, parallel to the needle track, while cells transplanted to the STR accumulated along the border between the striatum and the in a wedge-shaped, semi lunar "pocket." They suggested that the shape of the cell deposit in the FM was likely due to damage caused by the injection procedure.

"This is an indicator that surgical injury may be the leading factor initiating the rejection process," the researchers said. "Thus, minimally traumatic allograft transplantation, preventing activation of the and limiting foreign antigen presentation, may contribute to long-term allograft survival."

They commented that the STR grafts were transplanted closer to the ventricles than were the FM grafts, suggesting that the "appear to present a favorable microenvironment." Additionally, they hypothesized that variability in may be related to the differences in immune responses that may exist between white matter and grey matter, as the FM is the largest region of white matter while the STR is a grey matter structure.

"Our observation that immunorejection depends on the graft implantation site has important ramifications," said Dr. Walczak. "It may account for the variability in allograft survival reported by different research groups."

The accumulation of transplanted cells in the 'pocket' between two natural bordering regions of the brain, with minimal disruption to tissue integrity, appears the most plausible explanation for the dramatic difference in the allograft rejection rate, they wrote.

They concluded that the impact of the topographical and anatomical characteristics of the target site for allografting should be carefully considered when designing cell therapies for neurological disorders at both the pre-clinical and clinical levels.

Explore further: Secondhand smoke results in graft rejection

More information: Cell Transplant. Appeared or available online: January 2, 2013. www.ingentaconnect.com/content/cog/ct/pre-prints/ct0888janowski

Related Stories

Secondhand smoke results in graft rejection

February 23, 2012

A new study published in the American Journal of Transplantation reveals that cigarette smoke exposure, in a cause-effect manner, results in graft rejection that would have been prevented by certain drug treatments.

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.