Propping open the door to the blood brain barrier

The treatment of central nervous system (CNS) diseases can be particularly challenging because many of the therapeutic agents such as recombinant proteins and gene medicines are not easily transported across the blood-brain barrier (BBB). Focused ultrasound can be used to "open the door" of the blood brain barrier. However, finding a way to "prop the door open" to allow therapeutics to reach diseased tissue without damaging normal brain tissue is the focus of a new study by a team of researchers at the Institute of Biomedical Engineering at National Taiwan University presenting at the 57th Annual Meeting of the Biophysical Society (BPS), held Feb. 2-6, 2013, in Philadelphia, Pa.

The group is investigating the feasibility of using heparin, a common anticoagulant, to enhance the delivery of therapeutic macromolecules using ultrasound into the brain. Heparin could be employed to increase treatment efficacy in patients with different types of CNS diseases under the guidance of medical imaging system providing new hope in these challenging cases. Initial results show that heparin does have the potential to optimize therapeutic delivery with ultrasound, acting as a "doorstop," allowing drugs to better permeate the BBB and enhancing treatment success.

"A higher acoustic pressure and longer sonication, and/or a higher dose of microbubbles may increase the delivery of drugs or tracers into the sonicated brain tissue," explains Kuo-Wei Lu, a member of the research team, "but side-effects, such as microhemorrhage, can also increase dramatically. The results of this study indicate that heparin may offer a safer way can to enhance the delivery of therapeutics to patients with CNS diseases."

With these encouraging results, the next step for the team is to develop a focused with (MRI) guidance to establish suitable parameters needed for patient clinical trials. "Focused ultrasound sonication is a capable of localized and transient BBB opening for the delivery of CNS therapeutics," Lu states. "We hope by developing suitable parameters and using chemical enhancers like heparin, this can be a valuable tool in the treatment of patients with CNS diseases, opening the door to better patient outcomes."

More information: Presentation #3539-Pos, "Impact of initial vascular permeability and recovery speed of disrupted blood-brain barrier on nanodrug delivery into the brain tissue," will take place at 10:30 a.m. on Wednesday, Feb. 6, 2013, in the Pennsylvania Convention Center, Hall C. ABSTRACT: tinyurl.com/adycds6

Related Stories

Opening the brain to new treatments

date Mar 13, 2012

One of the trickiest parts of treating brain conditions is the blood brain barrier, a blockade of cells that prevent both harmful toxins and helpful pharmaceuticals from getting to the body's control center. ...

Recommended for you

Why you need one vaccine for measles and many for the flu

date 20 hours ago

While the influenza virus mutates constantly and requires a yearly shot that offers a certain percentage of protection, old reliable measles needs only a two-dose vaccine during childhood for lifelong immunity. ...

Scientists turn blood into neural cells

date 20 hours ago

Scientists at McMaster University have discovered how to make adult sensory neurons from human patients simply by having them roll up their sleeve and providing a blood sample.

How our gut changes across the life course

date 22 hours ago

Scientists and clinicians on the Norwich Research Park have carried out the first detailed study of how our intestinal tract changes as we age, and how this determines our overall health.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.