Scientists identify molecular system that could help develop potential treatments for neurodegenerative diseases

Scientists from the University of Southampton have identified the molecular system that contributes to the harmful inflammatory reaction in the brain during neurodegenerative diseases.

An important aspect of chronic neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's or prion disease, is the generation of an innate within the brain.

Results from the study open new avenues for the regulation of the inflammatory reaction and provide new insights into the understanding of the biology of , which play a leading role in the development and maintenance of this reaction.

Dr Diego Gomez-Nicola, from the CNS Inflammation group at the University of Southampton and lead author of the paper, says: "The understanding of microglial biology during neurodegenerative diseases is crucial for the development of potential to control the harmful inflammatory reaction. These potential interventions could modify or arrest like Alzheimer disease.

"The future potential outcomes of this line of research would be rapidly translated into the clinics of , and would improve the quality of life of patients with these diseases."

Microglial cells multiply during different , although little is known about to what extent this accounts for the expansion of the microglial population during the development of the disease or how it is regulated.

Writing in The Journal of Neuroscience, scientists from the University of Southampton describe how they used a laboratory model of neurodegeneration (murine prion disease), to understand the brain's response to microglial proliferation and dissected the molecules regulating this process. They found that signalling through a receptor called CSF1R is a key for the expansion of the microglial population and therefore drugs could target this.

Dr Diego Gomez-Nicola adds: "We have been able to identify that this molecular system is active in human Alzheimer's disease and variant Creutzfeldt–Jakob disease, pointing to this mechanism being universal for controlling microglial proliferation during neurodegeneration. By means of targeting CSF1R with selective inhibitors we have been able to delay the clinical symptoms of experimental prion disease, also preventing the loss of neurons."

add to favorites email to friend print save as pdf

Related Stories

Researchers 'switch off' neurodegeneration in mice

May 08, 2012

Researchers at the Medical Research Council (MRC) Toxicology Unit at the University of Leicester have identified a major pathway leading to brain cell death in mice with neurodegenerative disease. The team was able to block ...

Researchers find new piece in Alzheimer's puzzle

Feb 25, 2009

Yale researchers have filled in a missing gap on the molecular road map of Alzheimer's disease. In the Feb. 26 issue of the journal Nature, the Yale team reports that cellular prion proteins trigger the process by which ...

Recommended for you

Xenon exposure shown to erase traumatic memories

17 hours ago

McLean Hospital researchers are reporting that xenon gas, used in humans for anesthesia and diagnostic imaging, has the potential to be a treatment for post-traumatic stress disorder (PTSD) and other memory-related disorders.

Stop and listen: Study shows how movement affects hearing

18 hours ago

When we want to listen carefully to someone, the first thing we do is stop talking. The second thing we do is stop moving altogether. This strategy helps us hear better by preventing unwanted sounds generated ...

User comments