Scientists identify molecular system that could help develop potential treatments for neurodegenerative diseases

Scientists from the University of Southampton have identified the molecular system that contributes to the harmful inflammatory reaction in the brain during neurodegenerative diseases.

An important aspect of chronic neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's or prion disease, is the generation of an innate within the brain.

Results from the study open new avenues for the regulation of the inflammatory reaction and provide new insights into the understanding of the biology of , which play a leading role in the development and maintenance of this reaction.

Dr Diego Gomez-Nicola, from the CNS Inflammation group at the University of Southampton and lead author of the paper, says: "The understanding of microglial biology during neurodegenerative diseases is crucial for the development of potential to control the harmful inflammatory reaction. These potential interventions could modify or arrest like Alzheimer disease.

"The future potential outcomes of this line of research would be rapidly translated into the clinics of , and would improve the quality of life of patients with these diseases."

Microglial cells multiply during different , although little is known about to what extent this accounts for the expansion of the microglial population during the development of the disease or how it is regulated.

Writing in The Journal of Neuroscience, scientists from the University of Southampton describe how they used a laboratory model of neurodegeneration (murine prion disease), to understand the brain's response to microglial proliferation and dissected the molecules regulating this process. They found that signalling through a receptor called CSF1R is a key for the expansion of the microglial population and therefore drugs could target this.

Dr Diego Gomez-Nicola adds: "We have been able to identify that this molecular system is active in human Alzheimer's disease and variant Creutzfeldt–Jakob disease, pointing to this mechanism being universal for controlling microglial proliferation during neurodegeneration. By means of targeting CSF1R with selective inhibitors we have been able to delay the clinical symptoms of experimental prion disease, also preventing the loss of neurons."

Related Stories

Researchers 'switch off' neurodegeneration in mice

date May 08, 2012

Researchers at the Medical Research Council (MRC) Toxicology Unit at the University of Leicester have identified a major pathway leading to brain cell death in mice with neurodegenerative disease. The team was able to block ...

Researchers find new piece in Alzheimer's puzzle

date Feb 25, 2009

Yale researchers have filled in a missing gap on the molecular road map of Alzheimer's disease. In the Feb. 26 issue of the journal Nature, the Yale team reports that cellular prion proteins trigger the process by which ...

Recommended for you

Team makes breakthrough in understanding Canavan disease

date 3 hours ago

UC Davis investigators have settled a long-standing controversy surrounding the molecular basis of an inherited disorder that historically affected Ashkenazi Jews from Eastern Europe but now also arises in other populations ...

Finding the body clock's molecular reset button

date 6 hours ago

An international team of scientists has discovered what amounts to a molecular reset button for our internal body clock. Their findings reveal a potential target to treat a range of disorders, from sleep ...

A 'GPS' to navigate the brain's neuronal networks

date 7 hours ago

In new research published today by Nature Methods, scientists from the Hebrew University of Jerusalem and Harvard University have announced a "Neuronal Positioning System" (NPS) that maps the circuitry of the ...

Neurons constantly rewrite their DNA

date 7 hours ago

Johns Hopkins scientists have discovered that neurons are risk takers: They use minor "DNA surgeries" to toggle their activity levels all day, every day. Since these activity levels are important in learning, ...

Hate to diet? It's how we are wired

date 7 hours ago

If you're finding it difficult to stick to a weight-loss diet, scientists at the Howard Hughes Medical Institute's Janelia Research Campus say you can likely blame hunger-sensitive cells in your brain known ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.