Subcortical damage is 'primary cause' of neurological deficits after 'awake craniotomy'

Injury to the subcortical structures of the inner brain is a major contributor to worsening neurological abnormalities after "awake craniotomy" for brain tumors, reports a study in the February issue of Neurosurgery, official journal of the Congress of Neurological Surgeons.

During a procedure intended to protect critical functional areas in the outer brain (cortex), damage to subcortical areas—which may be detectable on MRI scans—is a major risk factor for persistent neurological deficits. "Our ability to identify and preserve cortical areas of function can still result in significant neurological decline postoperatively as a result of subcortical injury," write Dr. Victoria T. Trinh and colleagues of The University of Texas MD Anderson Cancer Center, Houston.

Risk Factors for Neurological Deficits after Awake Craniotomy

The researchers analyzed factors associated with worsening neurological function after awake craniotomy for brain tumor surgery. In awake craniotomy, the patient is sedated but conscious so as to be able to communicate with the surgeon during the operation.

The patient is asked to perform visual and verbal tasks while specific areas of the cortex are stimulated, generating a functional map of the brain surface. This helps the surgeon navigate safely to the tumor without damaging the "eloquent cortex"—critical areas of the brain involved in language or movement.

The study included 241 patients who underwent awake craniotomy with functional brain mapping from 2005 through 2010. Of these, 40 patients developed new neurological abnormalities. Dr. Trinh and colleagues examined potential predictive factors—including changes on a type of MRI scan called diffusion-weighted imaging (DWI).

Of the 40 cases with new neurological deficits, 36 developed while the surgeon was operating in the subcortical areas of the brain. These are the inner structures of the brain, located beneath the outer, folded . Just one abnormality developed while the surgeon was operating in the cortex only.

MRI Changes May Reflect Subcortical Damage

Neurological abnormalities developing while the surgeon was operating in the subcortex were likely to remain after surgery, and to persist at three months' follow-up evaluation. Dr. Trinh and coauthors write, "Patients with intraoperative deficits during subcortical dissection were over six times more likely to have persistently worsened neurological function at three-month follow-up."

In these patients, MRI scans showing more severe changes in the DWI pattern in the subcortex also predicted lasting neurological abnormalities. Of patients who had neurological deficits immediately after surgery and significant DWI changes, 69 percent had persistent deficits three months after surgery.

Patients who had "positive" cortical mapping—that is, in whom eloquent cortex was located during functional mapping—were somewhat more likely to have neurological abnormalities immediately after surgery. However, the risk of lasting abnormalities was not significantly higher compared to patients with negative cortical mapping.

Awake craniotomy with stimulation produces a "real-time functional map" of the that is invaluable to the neurosurgeon in deciding how best to approach the tumor. The new results suggest that, even when the eloquent cortex is not located on cortical mapping, subcortical areas near the tumor can still be injured during surgery. "Subcortical injury is the primary cause of neurological deficits following awake craniotomy procedures," Dr. Trinh and colleagues write.

The researchers add, "Preserving subcortical areas during tumor resections may reduce the severity of both immediate and late neurological sequelae." Based on their findings, they believe subcortical mapping techniques may play an important role in avoiding complications after awake .

add to favorites email to friend print save as pdf

Related Stories

New approach simplifies Parkinson's surgery

May 25, 2011

(Medical Xpress) -- University of Wisconsin Hospital and Clinics has become the second academic medical center in the country where neurosurgeons can perform deep-brain stimulation (DBS) in an intra-operative ...

Recommended for you

Common infections tied to some stroke risk in kids

36 minutes ago

A new study suggests that colds and other minor infections may temporarily increase stroke risk in children. The study found that the risk of stroke was increased only within a three-day period between a ...

Celebrities in 'Ice Bucket Challenge' to fight disease

11 hours ago

Steven Spielberg, Justin Bieber and Bill Gates are among many celebrities pouring buckets of ice water over their heads and donating to fight Lou Gehrig's disease, in a fundraising effort that has gone viral.

Study helps explain why elderly have trouble sleeping

12 hours ago

As people grow older, they often have difficulty falling asleep and staying asleep, and tend to awaken too early in the morning. In individuals with Alzheimer's disease, this common and troubling symptom ...

Targeted brain training may help you multitask better

14 hours ago

The area of the brain involved in multitasking and ways to train it have been identified by a research team at the IUGM Institut universitaire de gériatrie de Montréal and the University of Montreal.

User comments