Researchers find that alcohol consumption damages brain's support cells

March 18, 2013

Alcohol consumption affects the brain in multiple ways, ranging from acute changes in behavior to permanent molecular and functional alterations. The general consensus is that in the brain, alcohol targets mainly neurons. However, recent research suggests that other cells of the brain known as astrocytic glial cells or astrocytes are necessary for the rewarding effects of alcohol and the development of alcohol tolerance. The study, first-authored by Dr. Leonardo Pignataro, was published in the February 6th issue of the scientific journal Brain and Behavior.

"This is a fascinating result that we could have never anticipated. We know that astrocytes are the most abundant cell type in the central nervous system and that they are crucial for neuronal growth and survival, but so far, these cells had been thought to be involved only in brain's support functions. Our results, however, show that astrocytes have an active role in and dependence," explains Dr. Pignataro.

The team of researchers from Columbia and Yale Universities analyzed how changes gene expression in astrocyte cells and identified gene sets associated with stress, immune response, cell death, and , which may have profound implications for normal neuronal activity in the brain. "Our findings may explain many of the long-term inflammatory and degenerative effects observed in the brain of alcoholics," says Dr. Pignataro. "The change in gene expression observed in alcohol-exposed astrocytes supports the idea that some of the alcohol consumed reaches the brain and that ethanol (the active component of alcoholic beverages) is locally metabolized, increasing the production that react with cell components to affect the normal function of cells. This activates a in the cells in an attempt to defend from this chemical damage. On the other hand, the body recognizes these oxidized molecules as "foreign objects" generating an immune response against them that leads to the death of damage cells. This mechanism can explain the inflammatory degenerative process observed in the brain of chronic alcoholics, allowing for the development of different and novel therapeutically approaches to treat this disease" added Dr. Pignataro.

The consequences of alcohol on astrocytes revealed in this study go far beyond what happens to this particular cell type. Astrocytes play a crucial role in the CNS, supporting normal neuronal activity by maintaining homeostasis. Therefore, alcohol changes in gene expression in astrocytes may have profound implications for neuronal activity in the brain.

These findings will help scientists better understand alcohol-associated disorders, such as the brain neurodegenerative damage associated with chronic alcoholism and alcohol tolerance and dependence. "We hope that this newly discovered role of astrocytes will give scientists new targets other than neurons to develop novel therapies to treat alcoholism," Leonardo Pignataro concluded.

Explore further: Alcohol-related behavior changes -- blame your immune system

More information: Research paper:

This research was funded by grants from U.S. National Institutes of Health and co-authored by Dr. Florence Varodayan, formerly in the Department of Neuroscience at Columbia University, NY and now in the Committee on the Neurobiology of Addictive Disorders at the The Scripps Research Institute, CA; Lindsay Tannenholz, presently a graduate student in the Department of Pharmacology at Columbia University, NY; Dr. Petr Protiva, Associate Professor of Medicine at Yale University and the Veteran's Affairs Medical Center, CT; and Dr. Neil Harrison, Professor in the Departments of Anesthesiology and Pharmacology and Vice Chair for Molecular Neurobiology in Anesthesiology of Columbia University , NY.

Related Stories

Alcohol-related behavior changes -- blame your immune system

September 29, 2011

When you think about your immune system, you probably think about it fighting off a cold. But new research from the University of Adelaide suggests that immune cells in your brain may contribute to how you respond to alcohol.

Astrocytes: More than just glue

August 7, 2012

Epileptic fits are like thunderstorms raging in the brain: Nerve cells excite each other in an uncontrolled way so that strong, rhythmic electrical discharges sweep over whole brain regions. In the wake of such a seizure, ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.