Astrocytes: More than just glue

August 7, 2012
Glial cells (green) prevent a damaging, rhythmic build up of electrical activity in the nerve cells (upper curve): Activated glial cells cause the activity pattern to remain more even (lower curve; Image: Kirsch/University of Freiburg)

Epileptic fits are like thunderstorms raging in the brain: Nerve cells excite each other in an uncontrolled way so that strong, rhythmic electrical discharges sweep over whole brain regions. In the wake of such a seizure, the nerve cells are severely affected, and permanent damage is possible. The glia, a class of cells that surround the neurons in the brain, was long suspected to contribute to the damaging effects of epilepsy. Quite the opposite is the case, as the team of Prof. Dr. Carola Haas from the Bernstein Center and Dr. Matthias Kirsch from the Institute of Anatomy and Cell Biology at the University of Freiburg shows for the first time.

In the journal , the scientists report the beneficial effects of so-called astrocytes, a certain type of . They get their name from the Greek word for glue, as it was long thought that these cells simply hold the nerve cells together and provided them with nutrients. In the case of epilepsy, the prevalent opinion was that their reaction to a seizure would actually damage the brain. The researchers from Freiburg disagree. In fact, they say, astrocytes help to reduce long-term damage brought upon by epileptic fits.

The team discovered the positive effects of astrocytes in mice, in which epileptic states can be selectively triggered. If the scientists injected mice with a specific protein to activate the astrocytes prior to an epilepsy-inducing insult, fewer nerve cells died in the wake of the seizure. Other that would usually occur in the brain were likewise significantly reduced. The astrocytes’ protective effect lasted for many days after their activation. When the researchers measured the rodents’ brain activity, they likewise found fewer signs that are typical for a brain suffering from epilepsy. However, the authors report that the astrocytes had to be already activated before seizures were elicited. Activating them afterwards, on the other hand, did not lead to a protective effect.

Further studies will have to demonstrate that astrocytes have this protective influence all over the brain. According to Haas, who is also a member of Freiburg’s new cluster of excellence BrainLinks-BrainTools, their findings suggest that a timely activation of astrocytes could offer an effective protection from long-term damage to the brain.

Explore further: Control by the matrix: Researchers decipher the role of proteins in the cell environment

More information: Matthias Bechstein, Ute Häussler, Matthias Neef, Hans-Dieter Hofmann, Matthias Kirsch, Carola A. Haas (2012) CNTF-mediated preactivation of astrocytes attenuates neuronal damage and epileptiform activity in experimental epilepsy. Experimental Neurology 236 (1), 141-150. www.sciencedirect.com/science/ … ii/S0014488612001616

Related Stories

Control by the matrix: Researchers decipher the role of proteins in the cell environment

December 12, 2011
How astrocytes, certain cells of the nervous system, are generated was largely unknown up to now. Bochum's researchers have now investigated what influence the cell environment, known as the extracellular matrix, has on this ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.