Astrocytes: More than just glue

August 7, 2012
Glial cells (green) prevent a damaging, rhythmic build up of electrical activity in the nerve cells (upper curve): Activated glial cells cause the activity pattern to remain more even (lower curve; Image: Kirsch/University of Freiburg)

Epileptic fits are like thunderstorms raging in the brain: Nerve cells excite each other in an uncontrolled way so that strong, rhythmic electrical discharges sweep over whole brain regions. In the wake of such a seizure, the nerve cells are severely affected, and permanent damage is possible. The glia, a class of cells that surround the neurons in the brain, was long suspected to contribute to the damaging effects of epilepsy. Quite the opposite is the case, as the team of Prof. Dr. Carola Haas from the Bernstein Center and Dr. Matthias Kirsch from the Institute of Anatomy and Cell Biology at the University of Freiburg shows for the first time.

In the journal , the scientists report the beneficial effects of so-called astrocytes, a certain type of . They get their name from the Greek word for glue, as it was long thought that these cells simply hold the nerve cells together and provided them with nutrients. In the case of epilepsy, the prevalent opinion was that their reaction to a seizure would actually damage the brain. The researchers from Freiburg disagree. In fact, they say, astrocytes help to reduce long-term damage brought upon by epileptic fits.

The team discovered the positive effects of astrocytes in mice, in which epileptic states can be selectively triggered. If the scientists injected mice with a specific protein to activate the astrocytes prior to an epilepsy-inducing insult, fewer nerve cells died in the wake of the seizure. Other that would usually occur in the brain were likewise significantly reduced. The astrocytes’ protective effect lasted for many days after their activation. When the researchers measured the rodents’ brain activity, they likewise found fewer signs that are typical for a brain suffering from epilepsy. However, the authors report that the astrocytes had to be already activated before seizures were elicited. Activating them afterwards, on the other hand, did not lead to a protective effect.

Further studies will have to demonstrate that astrocytes have this protective influence all over the brain. According to Haas, who is also a member of Freiburg’s new cluster of excellence BrainLinks-BrainTools, their findings suggest that a timely activation of astrocytes could offer an effective protection from long-term damage to the brain.

Explore further: Control by the matrix: Researchers decipher the role of proteins in the cell environment

More information: Matthias Bechstein, Ute Häussler, Matthias Neef, Hans-Dieter Hofmann, Matthias Kirsch, Carola A. Haas (2012) CNTF-mediated preactivation of astrocytes attenuates neuronal damage and epileptiform activity in experimental epilepsy. Experimental Neurology 236 (1), 141-150. www.sciencedirect.com/science/article/pii/S0014488612001616

Related Stories

Recommended for you

Chatter in the deep brain spurs empathy in rats

June 23, 2017

It's a classic conundrum: while rushing to get to an important meeting or appointment on time, you spot a stranger in distress. How do you decide whether to stop and help, or continue on your way?

How brains surrender to sleep

June 23, 2017

Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna study fundamental aspects of sleep in roundworms. Using advanced technologies, they monitor the activity of all nerve cells in the brain while they ...

The neural relationship between light and sleep

June 23, 2017

Humans are diurnal animals, meaning that we usually sleep at night and are awake during the day, due at least in part to light or the lack thereof. Light is known to affect sleep indirectly by entraining—modifying the length ...

How pheromones trigger female sexual behavior

June 22, 2017

A study by a group of Japanese scientists showed how a male pheromone in mice enhances sexual behaviors in females—and how it may enhance a different behavior, aggression, in males—by identifying distinct neural circuits ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.