Astrocytes: More than just glue

August 7, 2012, Albert-Ludwigs-Universität Freiburg
Glial cells (green) prevent a damaging, rhythmic build up of electrical activity in the nerve cells (upper curve): Activated glial cells cause the activity pattern to remain more even (lower curve; Image: Kirsch/University of Freiburg)

Epileptic fits are like thunderstorms raging in the brain: Nerve cells excite each other in an uncontrolled way so that strong, rhythmic electrical discharges sweep over whole brain regions. In the wake of such a seizure, the nerve cells are severely affected, and permanent damage is possible. The glia, a class of cells that surround the neurons in the brain, was long suspected to contribute to the damaging effects of epilepsy. Quite the opposite is the case, as the team of Prof. Dr. Carola Haas from the Bernstein Center and Dr. Matthias Kirsch from the Institute of Anatomy and Cell Biology at the University of Freiburg shows for the first time.

In the journal , the scientists report the beneficial effects of so-called astrocytes, a certain type of . They get their name from the Greek word for glue, as it was long thought that these cells simply hold the nerve cells together and provided them with nutrients. In the case of epilepsy, the prevalent opinion was that their reaction to a seizure would actually damage the brain. The researchers from Freiburg disagree. In fact, they say, astrocytes help to reduce long-term damage brought upon by epileptic fits.

The team discovered the positive effects of astrocytes in mice, in which epileptic states can be selectively triggered. If the scientists injected mice with a specific protein to activate the astrocytes prior to an epilepsy-inducing insult, fewer nerve cells died in the wake of the seizure. Other that would usually occur in the brain were likewise significantly reduced. The astrocytes’ protective effect lasted for many days after their activation. When the researchers measured the rodents’ brain activity, they likewise found fewer signs that are typical for a brain suffering from epilepsy. However, the authors report that the astrocytes had to be already activated before seizures were elicited. Activating them afterwards, on the other hand, did not lead to a protective effect.

Further studies will have to demonstrate that astrocytes have this protective influence all over the brain. According to Haas, who is also a member of Freiburg’s new cluster of excellence BrainLinks-BrainTools, their findings suggest that a timely activation of astrocytes could offer an effective protection from long-term damage to the brain.

Explore further: Control by the matrix: Researchers decipher the role of proteins in the cell environment

More information: Matthias Bechstein, Ute Häussler, Matthias Neef, Hans-Dieter Hofmann, Matthias Kirsch, Carola A. Haas (2012) CNTF-mediated preactivation of astrocytes attenuates neuronal damage and epileptiform activity in experimental epilepsy. Experimental Neurology 236 (1), 141-150. … ii/S0014488612001616

Related Stories

Control by the matrix: Researchers decipher the role of proteins in the cell environment

December 12, 2011
How astrocytes, certain cells of the nervous system, are generated was largely unknown up to now. Bochum's researchers have now investigated what influence the cell environment, known as the extracellular matrix, has on this ...

Recommended for you

Study finds alcohol dampens brain waves associated with decision-making but not motor control

March 15, 2018
We all know that alcohol impairs our judgement, alertness and performance on tasks requiring attention, but the mechanism behind booze's effect on cognition still isn't well-understood. Now, a new study led by psychologists ...

Research reveals brain mechanism involved in language learning

March 15, 2018
Learning a new language may be more of a science than an art, a University of Sussex study finds.

New research sheds light on underlying cause of brain injury in stroke

March 15, 2018
New research shows how the novel drug QNZ-46 can help to lessen the effects of excess release of glutamate in the brain – the main cause of brain injury in stroke.

New tissue technique gives stunning 3-D insights into the human brain

March 15, 2018
Imperial researchers have helped develop a breakthrough imaging technique which reveals the ultra-fine structure of the brain in unprecedented detail.

Cell therapy could improve brain function for Alzheimer's disease

March 15, 2018
Like a great orchestra, your brain relies on the perfect coordination of many elements to function properly. And if one of those elements is out of sync, it affects the entire ensemble. In Alzheimer's disease, for instance, ...

Altering songbird brain provides insight into human behavior

March 15, 2018
Songbirds are providing insight into how a specific set of neurons may guide the learning of vocal behaviors in humans.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.