What causes seizure in focal epilepsy?

April 13, 2010, Public Library of Science

In focal epilepsy, seizures are generated by a localized, synchronous neuronal electrical discharge that may spread to large portions of the brain. In spite of intense research in the field of epilepsy, a key question remains unanswered: what are the earliest cellular events leading to the initiation of a focal seizure?

Elucidating this issue is of paramount importance both for understanding the pathophysiology of focal epilepsies and for the development of new pharmacological strategies for drug-resistant forms of these disorders. Publishing next week in the online, open access journal , a new study reveals that early activation of astroglia, the main population of glial cells in the brain, by hyperactive neurons is one of the crucial events that predisposes neurons nearby to the generation of an epileptic discharge.

By monitoring the activity of neurons and astroglia by simultaneous single or dual patch-clamp recordings, field potential recordings, and Ca2+ signal imaging in different experimental models of epilepsy, Giorgio Carmignoto and colleagues at the National Research Council, Italy, found that an episode of hyperactivity in a restricted group of neurons massively activates nearby astrocytes. Activated astrocytes, in turn, signal back to neurons and potentiate hypersynchronized . In conditions of enhanced excitability, this astrocyte feedback signal drives neurons towards the seizure-like discharge threshold. Accordingly, selective inhibition or stimulation of astrocyte Ca2+ signalling reduced or enhanced, respectively, seizure discharge generation. Epileptic discharge, in turn, triggers a second activation of astrocytes that may favour seizure propagation.

In summary, this study reveals that a recurrent excitatory loop between and astrocytes developing at restricted brain sites promotes and sustains . This neuron-astrocyte interaction may represent a novel target for the development of effective therapeutic strategies to control and target drug-resistant forms of the condition.

More information: Gómez-Gonzalo M, Losi G, Chiavegato A, Zonta M, Cammarota M, et al. (2010) An Excitatory Loop with Astrocytes Contributes to Drive Neurons to Seizure Threshold. PLoS Biol 8(4): e1000352. doi:10.1371/journal.pbio.1000352

Related Stories

Recommended for you

Spare parts from small parts: Novel scaffolds to grow muscle

February 20, 2018
Australian biomedical engineers have successfully produced a 3D material that mimics nature to transform cells into muscle.

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.