Photoacoustics spares healthy lymph nodes in patients with metastasized cancer

April 18, 2013
Ironoxyde particles spread uniformly when there are no metastases, but show gaps (right, yellow) when there are.

If a tumour has spread through the lymph nodes, the decision is often taken to exercise caution and remove extra tissue, to prevent it from spreading further. This often involves the removal of healthy lymph nodes. Photoacoustic detection allows surgeons to see which nodes are affected and which are not, while the operation is in progress. This could cut the number of unnecessary complications following surgery, while still ensuring that all affected tissue is removed. Diederik Grootendorst of the University of Twente's MIRA research institute yesterday defended his PhD thesis based on research into this technique.

The examination of currently involves extensive laboratory tests. As a result, surgeons have to wait several days for confirmation of the presence or absence of metastases in the excised lymph nodes. If it was possible to obtain this information during surgery, then further operations could be avoided. In addition, it would not be necessary to excise tissue unnecessarily, thereby avoiding the associated complications. The conditions in an operating theatre impose restrictions on the use of imaging techniques such as MRI. Accordingly, any detection equipment used must have no impact whatsoever on the operating conditions. In photoacoustics (a combination of light and sound), tissue is illuminated with a laser, causing local heating. This creates an ultrasound wave, which can be used to generate an image. Mr Grootendorst has investigated the potential of this technique, both with and without the use of a .

Photoacoustic Image (PAI) shows the area where metastases are present, comparison with MRI result.

Melanoma

When a (a malignant skin ) metastasizes via the , the is often found at metastasis sites. Accordingly, these sites absorb more laser light than the surrounding tissue, which makes them easy to detect using photoacoustics. The use of several frequencies of helps to distinguish this pigment from blood, which also absorbs light very effectively. This is a very promising technique, as preliminary experiments on surgically excised human have shown. It takes just 10 to 15 minutes to generate an image of a node that is sufficiently clear for the nature of the tissue to be determined.

Nanoparticles

The situation is different with tumours that do not synthesize any clearly detectable pigment. In such cases, Diederik Grootendorst uses a standard contrast medium (based on iron oxide nanoparticles) to detect any metastases. Areas occupied by metastases do not absorb any nanoparticles, which creates 'gaps' in the image. Mr Grootendorst deliberately chose this contrast medium because it is already in clinical use, in the detection of liver metastases. Experiments in laboratory animals have shown that this technique can rapidly detect metastases in the lymph system.

Larger-scale studies (and clinical studies) are needed to determine whether this technique can indeed reliably identify the nature of such tissue. If so, this would give surgeons a fast and powerful tool for identifying follow-up treatment options while the operation itself is still in progress. This could also deliver significant financial savings in terms of , any additional surgery, and the treatment of postoperative complications.

The study, which was headed by MIRA's Prof. Theo Ruers and Dr Srirang Manohar, is a collaborative venture between the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL) in Amsterdam and Prof. Wiendelt Steenbergen's Biomedical Photonic Imaging group. This group is also investigating the potential of photoacoustics in other areas, such as the diagnosis of breast cancer. The group is part of the University of Twente's MIRA Institute for Biomedical Technology and Technical Medicine.

Diederik Grootendorst will defend his thesis, entitled "Detection of lymph node by photoacoustic imaging", on 17 April. His thesis supervisors are Prof. Theo Ruers and Prof. Wiendelt Steenbergen. His assistant supervisor is Dr Srirang Manohar.

Related Stories

Surgical technique spots cancer invasion with fluorescence

January 10, 2013

One of the greatest challenges faced by cancer surgeons is to know exactly which tissue to remove, or not, while the patient is under anesthesia. A team of surgeons and scientists at University of California, San Diego School ...

Lymphoseek approved to help locate lymph nodes

March 13, 2013

(HealthDay)—The injected imaging drug Lymphoseek (technetium Tc 99m tilmanocept) has been approved by the U.S. Food and Drug Administration to help surgeons locate the lymph nodes among people with breast cancer or melanoma.

Recommended for you

New treatment options for a fatal leukemia

July 27, 2015

In industrialized countries like in Europe, acute lymphoblastic leukemia is the most common form of cancer in children. An international research consortium lead by pediatric oncologists from the Universities of Zurich and ...

Exciting results from cancer immunoagent study

July 20, 2015

(Medical Xpress)—Cancer therapies have improved incrementally over the years, but cancer treatment largely remains analogous to forest fire suppression, in which the spread of fire is contained with deliberate controlled ...

Lymphomas tied to metabolic disruption

July 17, 2015

Researchers from the School of Medicine at The University of Texas Health Science Center at San Antonio have found evidence that directly links disrupted metabolism (energy production in cells) to a common and often fatal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.