Study coaxes clays to make human bone

May 31, 2013

Weak bones, broken bones, damaged bones, arthritic bones. Whether damaged by injury, disease or age, your body can't create new bone, but maybe science can. Researchers at North Dakota State University, Fargo, are making strides in tissue engineering, designing scaffolds that may lead to ways to regenerate bone. Published in the Journal of Biomedical Materials Research Part A, the research of Dr. Kalpana Katti, Dr. Dinesh Katti and graduate student Avinash Ambre includes a novel method that uses nanosized clays to make scaffolds to mineralize bone minerals such as hydroxyapatite.

The NDSU research team's 3-D mesh is comprised of degradable materials that are compatible to . Over time, the cells generate bone and the scaffold deteriorates. As indicated in the NDSU team's published scientific research from 2008 to 2013, the nanoclays enhance the mechanical properties of the scaffold by enabling scaffold to bear load while bone generates. An interesting finding by the Katti group has shown that the nanoclays also impart useful biological properties to the scaffold.

"The biomineralized nanoclays also impart osteogenic or bone-forming abilities to the scaffold to enable birth of bone," said Dr. Kalpana Katti, Distinguished Professor of civil engineering at NDSU. "Although it would have been exciting to say that this finding had a 'Eureka moment,' this discovery was a methodical exploration of simulations and modeling, indicating that amino acid modified nanoclays are viable new ," said Katti. The work was initially published in the Journal of Biomacromolecules in 2005. The current findings point toward the potential use of nanoclays for broader applications in medicine.

The NDSU's group most recent study in the Journal of Biomedical Materials Research Part A, published online Feb. 15, 2013, reports that nanoclays mediate human mesenchymal stem into and grow bone. The Katti research group uses , the building blocks of life, to modify clay structures and the modified nanoclays coax new bone growth. "Our current research studies underway involve the use of bioreactors that mimic fluid/blood flow in the human body during bone tissue regeneration," said Dr. Kalpana Katti.

The Katti group at NDSU has pioneered the use of nanoclays in bone regeneration since 2008, with research results appearing in Biomedical Materials, ASME Journal of Nanotechnology for Engineering and Medicine, Materials Science and Engineering C, along with the February 2013 publication in the Journal of Biomedical Materials Research Part A.

Bone tissue engineering represents important promise for regenerative medicine, according to Dr. Kalpana Katti. National Institutes of Health information shows that more than one million Americans have a hip or knee replaced each year. An aging population, in addition to orthopedic injuries of military veterans, and diseases such as osteoporosis and arthritis mean that the promise of scientific research to generate human bone could have far-reaching implications in the future.

Explore further: Researchers use a 3D printer to make bone-like material (w/ video)

More information: Journal of Biomedical Materials Research Part A. DOI: 10.1002/jbm.a.34561

Related Stories

Research uncovers new protein to treat damaged bones

January 10, 2013

Korean researchers believe that the 'DJ-1 protein' can be used to promote the formation of new bone tissue in patients suffering from osteoporosis by improving communication between bone making cells (osteoblasts) and blood ...

Developing human organs and body parts in the lab

May 28, 2013

Tissue engineering is making a huge impact in the world of science with artificial scaffold structures, in which new cells are encouraged to grow. This means that the nanostructure of tissues in the body can be mimicked, ...

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.